Skip to main content

Optimizing Chemotherapeutic Anti-cancer Treatment and the Tumor Microenvironment: An Analysis of Mathematical Models

  • Chapter
  • First Online:
Systems Biology of Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 936))

Abstract

We review results about the structure of administration of chemotherapeutic anti-cancer treatment that we have obtained from an analysis of minimally parameterized mathematical models using methods of optimal control. This is a branch of continuous-time optimization that studies the minimization of a performance criterion imposed on an underlying dynamical system subject to constraints. The scheduling of anti-cancer treatments has all the features of such a problem: treatments are administered in time and the interactions of the drugs with the tumor and its microenvironment determine the efficacy of therapy. At the same time, constraints on the toxicity of the treatments need to be taken into account. The models we consider are low-dimensional and do not include more refined details, but they capture the essence of the underlying biology and our results give robust and rather conclusive qualitative information about the administration of optimal treatment protocols that strongly correlate with approaches taken in medical practice. We describe the changes that arise in optimal administration schedules as the mathematical models are increasingly refined to progress from models that only consider the cancerous cells to models that include the major components of the tumor microenvironment, namely the tumor vasculature and tumor-immune system interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. André N, Padovani L, Pasquier E (2011) Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy? Future Oncol 7(3):385–394

    Article  PubMed  Google Scholar 

  2. Benzekry S, Hahnfeldt P (2013) Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers. J Theor Biol 335:233–244

    Article  Google Scholar 

  3. Billy F, Clairambault J, Fercoq O (2012) Optimisation of cancer drug treatments using cell population dynamics. In: Ledzewicz U, Schättler H, Friedman A, Kashdan E (eds) Mathematical methods and models in biomedicine. Springer, New York, pp 265–309

    Google Scholar 

  4. Friedman A (2012) Cancer as multifaceted disease. Math Model Nat Phenom 7:1–26

    Article  Google Scholar 

  5. Friedman A, Kim Y (2011) Tumor cell proliferation and migration under the influence of their microenvironment. Math Biosci Engr – MBE 8(2):371–383

    Article  Google Scholar 

  6. Gatenby RA (2009) A change of strategy in the war on cancer. Nature 459:508–509. doi:10.1038/459508a

    Article  CAS  PubMed  Google Scholar 

  7. Gatenby RA, Silva AS, Gillies RJ, Frieden BR (2009) Adaptive therapy. Cancer Res 69:4894–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldie JH, Coldman A (1998) Drug resistance in cancer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59:4770–4775

    CAS  PubMed  Google Scholar 

  10. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105(8):145–147

    Article  Google Scholar 

  11. Hao YB, Yi SY, Ruan J, Zhao L, Nan KJ (2014) New insights into metronomic chemotherapy- induced immunoregulation. Cancer Lett 354(2):220–226

    Article  CAS  PubMed  Google Scholar 

  12. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  13. Jain RK, Munn LL (2007) Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents. Princ Pract Oncol 21:1–7

    Google Scholar 

  14. Kamen B, Rubin E, Aisner J, Glatstein E (2000) High-time chemotherapy or high time for low dose? J Clin Oncol 18:2935–2937

    CAS  PubMed  Google Scholar 

  15. Kerbel RS (1997) A cancer therapy resistant to resistance. Nature 390:335–336

    Article  CAS  PubMed  Google Scholar 

  16. Kerbel RS (2000) Tumor angiogenesis: past, present and near future. Carcinogensis 21:505–515

    Article  CAS  Google Scholar 

  17. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105(8):R15–R24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 56:295–321

    Article  CAS  PubMed  Google Scholar 

  19. Ledzewicz U, Amini B, Schättler H (2015) Dynamics and control of a mathematical model for metronomic chemotherapy. Math Biosci, MBE 12(6):1257–1275. doi:10.3934/mbe.2015.12.1257

    Article  PubMed  Google Scholar 

  20. Ledzewicz U, Bratton K, Schättler H (2014) A 3-compartment model for chemotherapy of heterogeneous tumor populations. Acta Appl Math 135(1):191–207. doi:10.1007/s10440-014-9952-6

    Article  Google Scholar 

  21. Ledzewicz U, FarajiMosalman MS, Schättler H (2013) Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost. Discr Cont Dyn Syst Ser B 18:1031–1051. doi:10.3934/dcdsb.2013.18.1031

    Article  Google Scholar 

  22. Ledzewicz U, Naghnaeian M, Schättler H (2012) Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J Math Biol 64:557–577. doi:10.1007/s00285-011-0424-6

    Article  PubMed  Google Scholar 

  23. Ledzewicz U, Schättler H (2002) Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J Optim Theory Appl – JOTA 114:609–637

    Article  Google Scholar 

  24. Ledzewicz U, Schättler H (2005) The influence of PK/PD on the structure of optimal control in cancer chemotherapy models. Math Biosci Eng (MBE) 2(3):561–578

    Article  Google Scholar 

  25. Ledzewicz U, Schättler H (2007) Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J Control Optim 46(3):1052–1079

    Article  Google Scholar 

  26. Ledzewicz U, Schättler H (2014) On optimal chemotherapy for heterogeneous tumors. J Biol Syst 22(2):1–21

    Article  Google Scholar 

  27. Ledzewicz U, Schättler H (2014) Tumor microenvironment and anticancer therapies: an optimal control approach. In: A d’Onofrio, A Gandolfi (eds) Mathematical Oncology, Springer

    Google Scholar 

  28. Ledzewicz U, Schättler H, Reisi Gahrooi M, Mahmoudian Dehkordi S (2013) On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Math Biosci Eng (MBE) 10(3):803–819. doi:10.3934/mbe.2013.10.803

    Article  Google Scholar 

  29. Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Berthame B (2013) Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Math Model Numer Anal 47:377–399. doi:10.1051/m2an/2012031

    Article  Google Scholar 

  30. Lorz A, Lorenzi T, Clairambault J, Escargueil A, Perthame B (2015) Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull Math Biol 77:1–22

    Article  CAS  PubMed  Google Scholar 

  31. Moore H, Li NK (2004) A mathematical model for chronic myelogeneous leukemia (CML) and T cell interaction. J Theor Biol 227:513–523

    Article  PubMed  Google Scholar 

  32. Nanda S, Moore H, Lenhart S (2007) Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math Biosci 210:143–156

    Article  PubMed  Google Scholar 

  33. Norton L, Simon R (1986) The Norton-Simon hypothesis revisited. Cancer Treat Rep 70:41–61

    Google Scholar 

  34. d‘Onofrio A, Ledzewicz U, Maurer H, Schättler H (2009) On optimal delivery of combination therapy for tumors. Math Biosci 222:13–26. doi:10.1016/j.mbs.2009.08.004

    Article  PubMed  Google Scholar 

  35. Pasquier E, Kavallaris M, André N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7:455–465

    Article  PubMed  Google Scholar 

  36. Pasquier E, Ledzewicz U (2013) Perspective on “more is not necessarily better”: metronomic chemotherapy. Newsl Soc Math Biol 26(2):9–10

    Google Scholar 

  37. Pietras K, Hanahan D (2005) A multi-targeted, metronomic and maximum tolerated dose ‘chemo- switch’ regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    Article  CAS  PubMed  Google Scholar 

  38. Schättler H, Ledzewicz U (2012) Geometric optimal control. Springer, New York

    Book  Google Scholar 

  39. Schättler H, Ledzewicz U (2015) Optimal control for mathematical models of cancer therapies. Springer, New York

    Book  Google Scholar 

  40. Schättler H, Ledzewicz U, Amini B (2016) Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy. J Math Biol 72:1255–1280. doi:10.1007s/00285-015-0907y

    Google Scholar 

  41. Stepanova NV (1980) Course of the immune reaction during the development of a malignant tumour. Biophysics 24:917–923

    Google Scholar 

  42. Swierniak A (1988) Optimal treatment protocols in leukemia – modelling the proliferation cycle, Proc. 12th IMACS World Congress, Paris, vol 4, pp 170–172

    Google Scholar 

  43. Swierniak A (1995) Cell cycle as an object of control. J Biol Syst 3:41–54

    Article  Google Scholar 

  44. Swierniak A, Ledzewicz U, Schättler H (2003) Optimal control for a class of compartmental models in cancer chemotherapy. Int J Appl Math Comp Sci 13:357–368

    Google Scholar 

  45. Weitman SD, Glatstein E, Kamen BA (1993) Back to the basics: the importance of ‘concentration x time’ in oncology. J Clin Oncol 11:820–821

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the National Science Foundation under collaborative research Grants Nos. DMS 1311729/1311733. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Ledzewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ledzewicz, U., Schaettler, H. (2016). Optimizing Chemotherapeutic Anti-cancer Treatment and the Tumor Microenvironment: An Analysis of Mathematical Models. In: Rejniak, K. (eds) Systems Biology of Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-42023-3_11

Download citation

Publish with us

Policies and ethics