Skip to main content

Effect of Microstructure on Mechanical Response of MAX Phases

  • Conference paper
  • First Online:

Abstract

High density samples of Ti2AlC, a MAX Phase material, with three different grain sizes were processed by Reaction Sintering. The dynamic thermo-mechanical response of these samples was investigated by a modified Split Hopkinson Pressure Bar in conjunction with induction heating. Ti2AlC exhibits high compressive strength (above 600 MPa) for temperatures as high as 1100 °C under dynamic loading. The peak compressive stress decreases with increasing temperatures. Specimens exhibited catastrophic brittle failure at room temperature but graceful failure at high temperatures. Moreover, the temperature at which graceful failure occurs decreases with increasing grain size. Also, a Hall-Petch like relationship was observed between compressive strength and the grain diameter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barsoum, M.W.: MAX phases: properties of machinable ternary carbides and nitrides. Wiley. http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527330119.html (2015). Accessed 15 June 2015

  2. Barsoum, M.W., Radovic, M.: Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 41(1), 195–227 (2011)

    Article  Google Scholar 

  3. Barsoum, M.W.: The MN + 1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog. Solid State Chem. 28(1–4), 201–281 (2000)

    Article  Google Scholar 

  4. Barsoum, M.W., El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79(7), 1953–1956 (1996)

    Article  Google Scholar 

  5. Radovic, M., Barsoum, M.W.: MAX phases: bridging the gap between metals and ceramics. Am. Ceram. Soc. Bull. 92(3), 20–27 (2013)

    Google Scholar 

  6. Yang, H.J., Pei, Y.T., Rao, J.C., De Hosson, J.T.M., Li, S.B., Song, G.M.: High temperature healing of Ti2AlC: on the origin of inhomogeneous oxide scale. Scr. Mater. 65(2), 135–138 (2011)

    Article  Google Scholar 

  7. Basu, S., Obando, N., Gowdy, A., Karaman, I., Radovic, M.: Long-term oxidation of Ti2AlC in air and water vapor at 1000–1300°C temperature range. J. Electrochem. Soc. 159(2), C90–C96 (2011)

    Article  Google Scholar 

  8. Wang, X.H., Zhou, Y.C.: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59(3–4), 303–320 (2003)

    Article  Google Scholar 

  9. Byeon, J.W., Liu, J., Hopkins, M., Fischer, W., Garimella, N., Park, K.B., Brady, M.P., Radovic, M., El-Raghy, T., Sohn, Y.H.: Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxid. Met. 68(1–2), 97–111 (2007)

    Article  Google Scholar 

  10. Radovic, M., Barsoum, M.W., Ganguly, A., Zhen, T., Finkel, P., Kalidindi, S.R., Lara-Curzio, E.: On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300–1573 K temperature range. Acta Mater. 54(10), 2757–2767 (2006)

    Article  Google Scholar 

  11. Radovic, M., Barsoum, M.W., El-Raghy, T., Wiederhorn, S.M., Luecke, W.E.: Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater. 50(6), 1297–1306 (2002)

    Article  Google Scholar 

  12. Zhen, T., Barsoum, M.W., Kalidindi, S.R.: Effects of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. Acta Mater. 53(15), 4163–4171 (2005)

    Article  Google Scholar 

  13. Zhang, H., Wang, X., Wan, P., Zhan, X., Zhou, Y.: Insights into high-temperature uniaxial compression deformation behavior of Ti3AlC2. J. Am. Ceram. Soc. 98, 3332–3337 (2015)

    Article  Google Scholar 

  14. Barsoum, M.W., El-Raghy, T., Ali, M.: Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 31(7), 1857–1865 (2000)

    Article  Google Scholar 

  15. El-Raghy, T., Barsoum, M.W., Zavaliangos, A., Kalidindi, S.R.: Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature. J. Am. Ceram. Soc. 82(10), 2855–2860 (1999)

    Article  Google Scholar 

  16. Radovic, M., Barsoum, M.W., El-Raghy, T., Seidensticker, J., Wiederhorn, S.: Tensile properties of Ti3SiC2 in the 25–1300°C temperature range. Acta Mater. 48(2), 453–459 (2000)

    Article  Google Scholar 

  17. Tian, W., Sun, Z., Hashimoto, H., Du, Y.: Compressive deformation behavior of ternary compound Cr2AlC. J. Mater. Sci. 44(1), 102–107 (2008)

    Article  Google Scholar 

  18. Wan, D.-T., He, L.-F., Zheng, L.-L., Zhang, J., Bao, Y.-W., Zhou, Y.-C.: A new method to improve the high-temperature mechanical properties of Ti3SiC2 by substituting Ti with Zr, Hf, or Nb. J. Am. Ceram. Soc. 93(6), 1749–1753 (2010)

    Google Scholar 

  19. Bhattacharya, R., Benitez, R., Radovic, M., Goulbourne, N.C.: High strain-rate response and deformation mechanisms in polycrystalline Ti2AlC. Mater. Sci. Eng. A 598, 319–326 (2014)

    Article  Google Scholar 

  20. Naik Parrikar, P., Benitez, R., Gao, H., Radovic, M., Shukla, A.: Mechanical response of fine grained Ti2AlC under extreme thermo-mechanical loading conditions. Mater. Sci. Eng. A 658, 176–184 (2016)

    Article  Google Scholar 

  21. Subhash, G., Ravichandran, G.: Split-Hopkinson pressure bar testing of ceramics—ASM International. In: Kuhn, H., Medlin, D. (eds.) ASM Handbook, Mechanical Testing and Evaluation, vol. 8, pp. 497–504. ASM International, Materials Park (2000)

    Google Scholar 

Download references

Acknowledgment

Authors acknowledge the financial support from CMMI, NSF, Grant Nos. 1233887 and 1233792 at the University of Rhode Island and Texas A&M University, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Naik Parrikar, P., Benitez, R., Radovic, M., Shukla, A. (2017). Effect of Microstructure on Mechanical Response of MAX Phases. In: Ralph, W., Singh, R., Tandon, G., Thakre, P., Zavattieri, P., Zhu, Y. (eds) Mechanics of Composite and Multi-functional Materials, Volume 7 . Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41766-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41766-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41765-3

  • Online ISBN: 978-3-319-41766-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics