Skip to main content

Introduction to Adaptive and Robust Active Vibration Control

  • Chapter
  • First Online:
Adaptive and Robust Active Vibration Control

Abstract

The reasons for doing active vibration control are emphasized as well as the principles of the basic approaches. Feedback and feedforward vibration compensation approaches are discussed from a unified point of view. The high performance required in the presence of variability of the vibration characteristics leads to the use of robust and adaptive designs for active vibration control systems. The challenges related to these approaches are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In these two examples the actuators are driven by a feedback controller, but in other cases the actuator can be driven by a feedforward compensator.

  2. 2.

    Light mechanical structures are characterized by multiple low damped vibration modes. These modes have to be damped since on the one hand they can become a source of vibration and on the other environmental disturbances can lead to inadmissible movements of the structure.

  3. 3.

    Both the controller and the plant to be controlled are stable.

  4. 4.

    The modulus margin is the minimum distance between the open-loop transfer function hodograph and the Nyquist point and is equal to the inverse of the maximum of the modulus of the sensitivity function [6].

  5. 5.

    For example, narrow-band disturbances can be rejected by feedback up to a certain number while keeping an acceptable profile for the output sensitivity function (at least 3 or 4—see [7] and Chap. 13). Sufficiently “narrow” finite-band disturbances can also be handled by feedback alone.

  6. 6.

    The source is located upstream with respect to the location where the residual force (acceleration) or noise is measured.

  7. 7.

    The resulting controller may be of high order and this raises the problem of controller order reduction, which will be discussed in Chap. 9.

  8. 8.

    The input sensitivity function is the transfer function between the disturbance p(t) and the control input u(t) (see Fig. 1.4).

  9. 9.

    This will be illustrated on the experimental platform that will be presented in Sect. 2.3.

References

  1. Li S, Qiu J, Li J, Ji H, Zhu K (2012) Multi-modal vibration control using amended disturbance observer compensation. IET Control Theory Appl 6(1):72–83. doi:10.1049/iet-cta.2010.0573

    Article  MathSciNet  Google Scholar 

  2. Li S, Li J, Mo Y, Zhao R (2014) Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator. Smart Mater Struct 23(1):1–13

    Article  Google Scholar 

  3. Fuller C, Elliott S, Nelson P (1999) Active control of vibration. Academic Press, Cambridge

    Google Scholar 

  4. Elliott S (2001) Signal processing for active control. Academic Press, San Diego, California

    Google Scholar 

  5. Preumont A (2011) Vibration control of active structures—an introduction. Springer, Heidelberg

    Google Scholar 

  6. Landau I, Zito G (2005) Digital control systems—design, identification and implementation. Springer, London

    Google Scholar 

  7. Landau ID, Silva AC, Airimitoaie TB, Buche G, Noé M (2013) Benchmark on adaptive regulation—rejection of unknown/time-varying multiple narrow band disturbances. Eur J Control 19(4):237–252. doi:10.1016/j.ejcon.2013.05.007

  8. Alma M, Martinez J, Landau I, Buche G (2012) Design and tuning of reduced order H\(_\infty \) feedforward compensators for active vibration control. IEEE Trans Control Syst Technol 20(2):554–561. doi:10.1109/TCST.2011.2119485

  9. Rotunno M, de Callafon R (2003) Design of model-based feedforward compensators for vibration compensation in a flexible structure. Internal report, Dept. of Mechanical and Aerospace Engineering. University of California, San Diego

    Google Scholar 

  10. Carmona J, Alvarado V (2000) Active noise control of a duct using robust control theory. IEEE Trans. Control Syst Technol 8(6):930–938

    Article  Google Scholar 

  11. Tay TT, Mareels IMY, Moore JB (1997) High performance control. Birkhäuser Boston

    Google Scholar 

  12. Elliott S, Sutton T (1996) Performance of feedforward and feedback systems for active control. IEEE Trans Speech Audio Process 4(3):214–223. doi:10.1109/89.496217

    Article  Google Scholar 

  13. Kuo S, Morgan D (1999) Active noise control: a tutorial review. Proc IEEE 87(6):943–973. doi:10.1109/5.763310

    Article  Google Scholar 

  14. Hu J, Linn J (2000) Feedforward active noise controller design in ducts without independent noise source measurements. IEEE Trans Control Syst Technol 8(3):443–455

    Article  Google Scholar 

  15. Jacobson C, Johnson CR, Jr, McCormick D, Sethares W (2001) Stability of active noise control algorithms. IEEE Signal Process Lett 8(3):74–76. doi:10.1109/97.905944

  16. Zeng J, de Callafon R (2006) Recursive filter estimation for feedforward noise cancellation with acoustic coupling. J Sound Vib 291(3–5):1061–1079. doi:10.1016/j.jsv.2005.07.016

    Article  MathSciNet  MATH  Google Scholar 

  17. Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive control, 2nd edn. Springer, London

    Book  MATH  Google Scholar 

  18. Bodson M, Douglas S (1997) Adaptive algorithms for the rejection of sinusosidal disturbances with unknown frequency. Automatica 33:2213–2221

    Article  MathSciNet  MATH  Google Scholar 

  19. Benamara F, Kabamba P, Ulsoy A (1999) Adaptive sinusoidal disturbance rejection in linear discrete-time systems—part I: Theory. J Dyn Syst Meas Control 121:648–654

    Google Scholar 

  20. Valentinotti S (2001) Adaptive rejection of unstable disturbances: Application to a fed-batch fermentation. Thèse de doctorat, École Polytechnique Fédérale de Lausanne

    Google Scholar 

  21. Marino R, Santosuosso G, Tomei P (2003) Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica 39:1755–1761

    Article  MathSciNet  MATH  Google Scholar 

  22. Ding Z (2003) Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica 39(3):471–479. doi:10.1016/S0005-1098(02)00251-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Landau I, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension—an internal model principle approach. Automatica 41(4):563–574

    Article  MathSciNet  MATH  Google Scholar 

  24. Kinney C, Fang H, de Callafon R, Alma M (2011) Robust estimation and automatic controller tuning in vibration control of time varying harmonic disturbances. In: 18th IFAC World Congress, Milano, Italy, pp 5401–5406

    Google Scholar 

  25. Aranovskiy S, Freidovich LB (2013) Adaptive compensation of disturbances formed as sums of sinusoidal signals with application to an active vibration control benchmark. Eur J Control 19(4), 253–265. doi:10.1016/j.ejcon.2013.05.008. (Benchmark on adaptive regulation: rejection of unknown/time-varying multiple narrow band disturbances)

  26. Chen X, Tomizuka M (2012) A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives. IEEE Trans Control Syst Technol 20(2):408–415. doi:10.1109/TCST.2011.2178025

    Article  Google Scholar 

  27. Emedi Z, Karimi A (2012) Fixed-order LPV controller design for rejection of a sinusoidal disturbance with time-varying frequency. In: 2012 IEEE multi-conference on systems and control, Dubrovnik

    Google Scholar 

  28. Marino R, Santosuosso G, Tomei P (2008) Output feedback stabilization of linear systems with unknown additive output sinusoidal disturbances. Eur J Control 14(2):131–148

    Article  MathSciNet  Google Scholar 

  29. Landau ID, Alma M, Constantinescu A, Martinez JJ, Noë M (2011) Adaptive regulation—rejection of unknown multiple narrow band disturbances (a review on algorithms and applications). Control Eng Pract 19(10):1168–1181. doi:10.1016/j.conengprac.2011.06.005

    Article  Google Scholar 

  30. Castellanos-Silva A, Landau ID, Dugard L, Chen X (2016) Modified direct adaptive regulation scheme applied to a benchmark problem. Eur J Control 28:69–78. doi:10.1016/j.ejcon.2015.12.006

    Article  MathSciNet  MATH  Google Scholar 

  31. Landau ID, Airimitoaie TB, Castellanos SA (2015) Adaptive attenuation of unknown and time-varying narrow band and broadband disturbances. Int J Adapt Control Signal Process 29(11):1367–1390

    Google Scholar 

  32. Landau ID, Airimitoaie TB, Castellanos SA, Alma M (2015) Adaptative active vibration isolation—a control perspective. MATEC web of conferences 20, 04,001. doi:10.1051/matecconf/20152004001

  33. Alkhatib R, Golnaraghi M (2003) Active structural vibration control: a review. Shock Vib Dig 35(5):367

    Article  Google Scholar 

  34. Fuller C, Von Flotow A (1995) Active control of sound and vibration. IEEE Control Syst 15(6):9–19

    Article  Google Scholar 

  35. Zhou S, Shi J (2001) Active balancing and vibration control of rotating machinery: a survey. Shock Vib Dig 33(5):361–371

    Article  Google Scholar 

  36. Preumont A, François A, Bossens F, Abu-Hanieh A (2002) Force feedback versus acceleration feedback in active vibration isolation. J Sound Vib 257(4):605–613

    Article  Google Scholar 

  37. Martinez JJ, Alma M (2012) Improving playability of blu-ray disc drives by using adaptive suppression of repetitive disturbances. Automatica 48(4):638–644

    Article  MathSciNet  MATH  Google Scholar 

  38. Taheri B (2013) Real-time pathological tremor identification and suppression. Phd thesis, Southern Methodist University

    Google Scholar 

  39. Taheri B, Case D, Richer E (2014) Robust controller for tremor suppression at musculoskeletal level in human wrist. IEEE Trans Neural Syst Rehabil Eng 22(2):379–388. doi:10.1109/TNSRE.2013.2295034

    Article  Google Scholar 

  40. Taheri B, Case D, Richer E (2015) Adaptive suppression of severe pathological tremor by torque estimation method. IEEE/ASME Trans Mechatron 20(2):717–727. doi:10.1109/TMECH.2014.2317948

    Article  Google Scholar 

  41. Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039

    Article  Google Scholar 

  42. Karkosch H, Svaricek F, Shoureshi R, Vance J (1999) Automotive applications of active vibration control. In: Proceedings of the European control conference

    Google Scholar 

  43. Li Y, Horowitz R (2001) Active suspension vibration control with dual stage actuators in hard disk drives. In: Proceedings of the American control conference, 2001, vol 4, pp 2786–2791. IEEE, New York

    Google Scholar 

  44. Hong J, Bernstein DS (1998) Bode integral constraints, collocation, and spillover in active noise and vibration control. IEEE Trans Control Syst Technol 6(1):111–120

    Article  Google Scholar 

  45. Bodson: Call for papers: Recent advances in adaptive methods for frequency estimation with applications. Int J Adapt Control Signal Process 28(6), 562–562 (2014). doi:10.1002/acs.2486

  46. Chen X, Tomizuka M (2015) Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing. Int J Adapt Control Signal Process 29(11):1459–1474. doi:10.1002/acs.2546

  47. Chen B, Pin G, Ng WM, Hui SYR, Parisini T (2015) A parallel prefiltering approach for the identification of a biased sinusoidal signal: Theory and experiments. Int J Adapt Control Signal Process 29(12):1591–1608. doi:10.1002/acs.2576

  48. Khan NA, Boashash B (2016) Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int J Adapt Control Signal Process 30(3):429–442. doi:10.1002/acs.2583

  49. Marino R, Tomei P (2016) Adaptive notch filters are local adaptive observers. Int J Adapt Control Signal Process 30(1):128–146. doi:10.1002/acs.2582

  50. Carnevale D, Galeani S, Sassano M, Astolfi A (2016) Robust hybrid estimation and rejection of multi-frequency signals. Int J Adapt Control Signal Process. doi:10.1002/acs.2679

  51. Jafari S, Ioannou PA (2016) Rejection of unknown periodic disturbances for continuous-time MIMO systems with dynamic uncertainties. Int J Adapt Control Signal Process. doi:10.1002/acs.2683

  52. Menini L, Possieri C, Tornambè A (2015) Sinusoidal disturbance rejection in chaotic planar oscillators. Int J Adapt Control Signal Process 29(12):1578–1590. doi:10.1002/acs.2564

  53. Ushirobira R, Perruquetti W, Mboup M (2016) An algebraic continuous time parameter estimation for a sum of sinusoidal waveform signals. Int J Adapt Control Signal Process. To appear

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Doré Landau .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Landau, I.D., Airimitoaie, TB., Castellanos-Silva, A., Constantinescu, A. (2017). Introduction to Adaptive and Robust Active Vibration Control. In: Adaptive and Robust Active Vibration Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41450-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41450-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41449-2

  • Online ISBN: 978-3-319-41450-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics