Skip to main content

Mass Analyzers and Mass Spectrometers

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 919))

Abstract

Mass spectrometers are comprised of three main components: an ion source, a mass analyzer, and a detector. Ionization of the analyte occurs in the ion source and the resulting ions are counted at the detector. However, it is the mass analyzer that is responsible for determing the mass-to-charge ratio (m/z) of the ions (Jennings KR, Dolnikowski GG, Method Enzymol 193:37–61, 1990). Therefore, it is primarily the analyzer that allows the mass spectrometer to serve its primary goal – determining the mass of the analytes being measured. This becomes important in the field of molecular biology, where biomolecules may be of low molecular weight or often take on multiple charges (z) after ionization (Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM, Science 246:64–71, 1989). For this reason, the choice of analyzer is dependant on the properties of the analyte after ionization and the requirements of the experiment being performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jennings KR, Dolnikowski GG (1990) Mass analyzers. Method Enzymol 193:37–61

    Article  CAS  Google Scholar 

  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  3. Chernushevich IV, Ens W, Standing KG (1999) Orthogonal-injection TOFMS for analyzing biomolecules. Anal Chem 71:452A–461A

    Article  CAS  PubMed  Google Scholar 

  4. Miller PE, Denton MB (1986) The quadrupole mass filter: basic operating concepts. J Chem Educ 63:617–622

    Article  CAS  Google Scholar 

  5. March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369

    Article  CAS  Google Scholar 

  6. Hayes RN, Gross ML (1990) Collision-induced dissociation. Method Enzymol 193:237–263

    Article  CAS  Google Scholar 

  7. Arpino PJ, Guiochon G (1979) LC/MS coupling. Anal Chem 51(7):692A–697A

    Article  Google Scholar 

  8. Blakely CR, Vestal ML (1983) Thermospray interface for liquid chromatography/mass spectrometry. Anal Chem 55:750–754

    Article  Google Scholar 

  9. Wong PSH, Cooks RG (1997) Ion trap mass spectrometry. Currentseparations.com 16(3)

    Google Scholar 

  10. Paul W, Steinwedel H (1953) Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift für Naturforschung A 8(7):448–450

    Article  Google Scholar 

  11. Stafford GC, Kelley PE, Syka JEP, Reynolds WE, Todd JFJ (1984) Recent improvements in and applications of advanced ion trap technology. Int J Mass Spectrom Ion Process 60(1):85–98

    Article  CAS  Google Scholar 

  12. Tong W, Link A, Eng JK, Yates JR (1999) Identification of proteins in complexes by solid-phase microextraction/multistep elution/capillary electrophoresis/tandem mass spectrometry. Anal Chem 71:2270–2278

    Article  CAS  PubMed  Google Scholar 

  13. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM, Yates JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  CAS  PubMed  Google Scholar 

  14. Karas M, Bachman D, Bagr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    Article  CAS  Google Scholar 

  15. Juhasz P, Roskey MT, Smirnov IP, Haff LA, Vestal ML, Martin SA (1996) Applications of delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry to oligonucleotide analysis. Anal Chem 68:941–946

    Article  CAS  PubMed  Google Scholar 

  16. Mamyrin BA (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Mass Spectrom 206:251–266

    Article  CAS  Google Scholar 

  17. Cotter RJ (1999) The new time-of-flight mass spectrometry. Anal Chem 71:445A–451A

    Article  CAS  PubMed  Google Scholar 

  18. Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA (1973) The mass reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov Phys – JETP 64:82–89

    CAS  Google Scholar 

  19. Vestal ML, Juhasz P, Martin SA (1995) Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 9(11):1044–1050

    Article  CAS  Google Scholar 

  20. Juhasz P, Vestal ML, Martin SA (1997) On the initial velocity of ions generated by matrix-assisted laser desorption ionization and its effect on the calibration of delayed extraction time-of-flight mass spectra. J Am Soc Mass Spectrom 8:209–217

    Article  CAS  Google Scholar 

  21. Karas M, Bahr U (1990) Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal Chem 9(10):321–325

    Article  CAS  Google Scholar 

  22. Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix assisted ultraviolet laser desorption/ionization. Method Ezymol 193:280–295

    Article  CAS  Google Scholar 

  23. Pappin DJC, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332

    Article  CAS  PubMed  Google Scholar 

  24. Thiede B, Höhenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35:237–247

    Article  CAS  PubMed  Google Scholar 

  25. Comisarow MB, Marshall AG (1974) Fourier transform mass Ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283

    Article  CAS  Google Scholar 

  26. Comisarow MB, Marshall AG (1974) Frequency-sweep Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 26:489–490

    Article  CAS  Google Scholar 

  27. Gorshkov MV, Udseth HR, Anderson GA, Smith RD (2002) High performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry at low magnetic field. Eur J Mass Spectrom 8:169–176

    Article  CAS  Google Scholar 

  28. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  PubMed  Google Scholar 

  29. Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24:168–200

    Article  CAS  PubMed  Google Scholar 

  30. Scigelova M, Hornshaw M, Giannakopulos A, Makarov A (2011) Fourier transform mass spectrometry. Mol Cell Proteomics 10(7):M111.009431. doi:10.1074/mcpM111.009431

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG (2005) The orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  CAS  PubMed  Google Scholar 

  32. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    Article  CAS  PubMed  Google Scholar 

  33. Zubarev RA, Makarov A (2013) Orbitrap mass spectrometry. Anal Chem 85:5288–5296

    Article  CAS  PubMed  Google Scholar 

  34. de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137

    Article  Google Scholar 

  35. Yost RA, Boyd RK (1990) Tandem mass spectrometry: quadrupole and hybrid instruments. Method Enzymol 193:154–200

    Article  CAS  Google Scholar 

  36. Cooks RG (1995) Collision-induced dissociation: readings and commentary. J Mass Spectrom 30:1215–1221

    Article  CAS  Google Scholar 

  37. Yost RA, Enke CG (1979) Triple quadrupole mass spectrometry. Anal Chem 51(12):1251A–1264A

    Article  CAS  Google Scholar 

  38. Yost RA, Enke CG (1978) Selected ion fragmentation with a tandem quadrupole mass spectrometer. J Am Chem Soc 100(7):2274–2275

    Article  CAS  Google Scholar 

  39. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  40. Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli RS, Hoyes J, Bateman RH (1996) High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 10:889–896

    Article  CAS  PubMed  Google Scholar 

  41. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  CAS  PubMed  Google Scholar 

  42. Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, Burlingame AL (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72:552–558

    Article  CAS  PubMed  Google Scholar 

  43. Vestal ML, Campbell JM (2005) Tandem time-of-flight mass spectrometry. Method Enzymol 402:79–108

    Article  CAS  Google Scholar 

  44. Bradbury NE, Nielsen RA (1936) Absolute values of the electron mobility in hydrogen. Phys Rev 49:388–393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Haag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haag, A.M. (2016). Mass Analyzers and Mass Spectrometers. In: Mirzaei, H., Carrasco, M. (eds) Modern Proteomics – Sample Preparation, Analysis and Practical Applications. Advances in Experimental Medicine and Biology, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-41448-5_7

Download citation

Publish with us

Policies and ethics