Skip to main content

Activation and Evasion of Inflammasomes by Yersinia

  • Chapter
  • First Online:
Inflammasome Signaling and Bacterial Infections

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 397))

Abstract

The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed ‘the inflammasome.’ Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96(24):14043–14048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayres JS, Trinidad NJ, Vance RE (2012) Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat Med 18(5):799–806. doi:10.1038/nm.2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balada-Llasat JM, Mecsas J (2006) Yersinia has a tropism for B and T cell zones of lymph nodes that is independent of the type III secretion system. PLoS Pathog 2(9):e86

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes PD, Bergman MA, Mecsas J, Isberg RR (2006) Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J Exp Med 203(6):1591–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Ari T, Gershunov A, Gage KL, Snall T, Ettestad P, Kausrud KL, Stenseth NC (2008) Human plague in the USA: the importance of regional and local climate. Biol Lett 4(6):737–740. doi:10.1098/rsbl.2008.0363

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergman MA, Loomis WP, Mecsas J, Starnbach MN, Isberg RR (2009) CD8(+) T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog 5(9):e1000573. doi:10.1371/journal.ppat.1000573

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergsbaken T, Cookson BT (2007) Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3(11):e161

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaduri S, Wesley IV, Bush EJ (2005) Prevalence of pathogenic Yersinia enterocolitica strains in pigs in the United States. Appl Environ Microbiol 71(11):7117–7121. doi:10.1128/AEM.71.11.7117-7121.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky IE, Medzhitov R (2008) Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog 4(5):e1000067. doi:10.1371/journal.ppat.1000067

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, Bliska JB, Medzhitov R (2010) A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7(5):376–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207(8):1745–1755. doi:10.1084/jem.20100257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490(7419):288–291. doi:10.1038/nature11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi L, Cummings RJ, Blander JM (2014) Death-defining immune responses after apoptosis. Am J Transplant 14(7):1488–1498. doi:10.1111/ajt.12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T, Javdan B, Bradley WP, Fung TC, Flavell RA, Brodsky IE, Shin S (2013) Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog 9(6):e1003400. doi:10.1371/journal.ppat.1003400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caulfield AJ, Walker ME, Gielda LM, Lathem WW (2014) The Pla protease of Yersinia pestis degrades fas ligand to manipulate host cell death and inflammation. Cell Host Microbe 15(4):424–434. doi:10.1016/j.chom.2014.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux D, Elliott JM, Derbise A, Hauser LJ, Garcia E (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 101(38):13826–13831. doi:10.1073/pnas.0404012101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung LK, Philip NH, Schmidt VA, Koller A, Strowig T, Flavell RA, Brodsky IE, Bliska JB (2014) IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. MBio 5(4):e01402–e01414. doi:10.1128/mBio.01402-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4(11):811–825. doi:nrmicro1526 [pii] 10.1038/nrmicro1526

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. doi:10.1038/nchembio.83

    Article  CAS  PubMed  Google Scholar 

  • Denecker G, Declercq W, Geuijen CA, Boland A, Benabdillah R, van Gurp M, Sory MP, Vandenabeele P, Cornelis GR (2001) Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signaling cascade upstream of bid. J Biol Chem 276(23):19706–19714

    Article  CAS  PubMed  Google Scholar 

  • Dessein R, Gironella M, Vignal C, Peyrin-Biroulet L, Sokol H, Secher T, Lacas-Gervais S, Gratadoux JJ, Lafont F, Dagorn JC, Ryffel B, Akira S, Langella P, Nunez G, Sirard JC, Iovanna J, Simonet M, Chamaillard M (2009) Toll-like receptor 2 is critical for induction of Reg3 beta expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 58(6):771–776. doi:10.1136/gut.2008.168443

    Article  CAS  PubMed  Google Scholar 

  • Dewoody R, Merritt PM, Houppert AS, Marketon MM (2011) YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol Microbiol 79(6):1445–1461. doi:10.1111/j.1365-2958.2011.07534.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dube PH, Revell PA, Chaplin DD, Lorenz RG, Miller VL (2001) A role for IL-1 alpha in inducing pathologic inflammation during bacterial infection. Proc Natl Acad Sci USA 98(19):10880–10885. doi:10.1073/pnas.191214498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand EA, Maldonado-Arocho FJ, Castillo C, Walsh RL, Mecsas J (2010) The presence of professional phagocytes dictates the number of host cells targeted for Yop translocation during infection. Cell Microbiol 12(8):1064–1082. doi:10.1111/j.1462-5822.2010.01451.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erfurth SE, Grobner S, Kramer U, Gunst DS, Soldanova I, Schaller M, Autenrieth IB, Borgmann S (2004) Yersinia enterocolitica induces apoptosis and inhibits surface molecule expression and cytokine production in murine dendritic cells. Infect Immun 72(12):7045–7054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS (2001) Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J Mol Biol 312(4):807–821. doi:10.1006/jmbi.2001.4973

    Article  CAS  PubMed  Google Scholar 

  • Grabenstein JP, Marceau M, Pujol C, Simonet M, Bliska JB (2004) The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun 72(9):4973–4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363. doi:10.1038/nri2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, Goktuna SI, Neuenhahn M, Fierer J, Paxian S, Van Rooijen N, Xu Y, O’Cain T, Jaffee BB, Busch DH, Duyster J, Schmid RM, Eckmann L, Karin M (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130(5):918–931. doi:10.1016/j.cell.2007.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobner S, Autenrieth SE, Soldanova I, Gunst DS, Schaller M, Bohn E, Muller S, Leverkus M, Wesselborg S, Autenrieth IB, Borgmann S (2006) Yersinia YopP-induced apoptotic cell death in murine dendritic cells is partially independent from action of caspases and exhibits necrosis-like features. Apoptosis 11(11):1959–1968. doi:10.1007/s10495-006-0189-3

    Article  PubMed  Google Scholar 

  • Grobner S, Adkins I, Schulz S, Richter K, Borgmann S, Wesselborg S, Ruckdeschel K, Micheau O, Autenrieth IB (2007) Catalytically active Yersinia outer protein P induces cleavage of RIP and caspase-8 at the level of the DISC independently of death receptors in dendritic cells. Apoptosis 12(10):1813–1825. doi:10.1007/s10495-007-0100-x

    Article  PubMed  Google Scholar 

  • Gurung P, Malireddi RK, Anand PK, Demon D, Walle LV, Liu Z, Vogel P, Lamkanfi M, Kanneganti TD (2012) Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem 287(41):34474–34483. doi:10.1074/jbc.M112.401406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR, Lamkanfi M, Kanneganti TD (2014) FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes. J Immunol 192(4):1835–1846. doi:10.4049/jimmunol.1302839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase R, Kirschning CJ, Sing A, Schrottner P, Fukase K, Kusumoto S, Wagner H, Heesemann J, Ruckdeschel K (2003) A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. J Immunol 171(8):4294–4303

    Article  CAS  PubMed  Google Scholar 

  • He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108(50):20054–20059. doi:10.1073/pnas.1116302108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64. doi:10.1146/annurev.immunol.19.1.47

    Article  CAS  PubMed  Google Scholar 

  • Hentschke M, Berneking L, Belmar Campos C, Buck F, Ruckdeschel K, Aepfelbacher M (2010) Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS One 5(10). doi:10.1371/journal.pone.0013165

    Google Scholar 

  • Hinnebusch BJ, Rosso ML, Schwan TG, Carniel E (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46(2):349–354

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom A, Rosqvist R, Wolf-Watz H, Forsberg A (1995) Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect Immun 63(6):2269–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmstrom A, Petterson J, Rosqvist R, Hakansson S, Tafazoli F, Fallman M, Magnusson KE, Wolf-Watz H, Forsberg A (1997) YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Mol Microbiol 24(1):73–91

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Meinzer U, Montcuquet N, Thachil E, Chateau D, Thiebaut R, Roy M, Alnabhani Z, Berrebi D, Dussaillant M, Pedruzzi E, Thenet S, Cerf-Bensussan N, Hugot JP, Barreau F (2012) Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling. J Clin Invest 122(6):2239–2251. doi:10.1172/JCI58147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121. doi:10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  • Koberle M, Klein-Gunther A, Schutz M, Fritz M, Berchtold S, Tolosa E, Autenrieth IB, Bohn E (2009) Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog 5(8):e1000551. doi:10.1371/journal.ppat.1000551

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwit N, Nelson C, Kugeler K, Petersen J, Plante L, Yaglom H, Kramer V, Schwartz B, House J, Colton L, Feldpausch A, Drenzek C, Baumbach J, DiMenna M, Fisher E, Debess E, Buttke D, Weinburke M, Percy C, Schriefer M, Gage K, Mead P (2015) Human Plague—United States, 2015. MMWR Morb Mortal Wkly Rep 64(33):918–919

    Article  PubMed  Google Scholar 

  • Kwuan L, Adams W, Auerbuch V (2013) Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response. Infect Immun 81(3):905–914. doi:10.1128/IAI.01014-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaRock CN, Cookson BT (2012) The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12(6):799–805. doi:10.1016/j.chom.2012.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lathem WW, Price PA, Miller VL, Goldman WE (2007) A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 315(5811):509–513

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre N, Sebbane F, Long D, Hinnebusch BJ (2006) Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect Immun 74(9):5126–5131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilo S, Zheng Y, Bliska JB (2008) Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect Immun 76(9):3911–3923. doi:IAI.01695-07 [pii] 10.1128/IAI.01695-07

  • Maldonado-Arocho FJ, Green C, Fisher ML, Paczosa MK, Mecsas J (2013) Adhesins and host serum factors drive Yop translocation by yersinia into professional phagocytes during animal infection. PLoS Pathog 9(6):e1003415. doi:10.1371/journal.ppat.1003415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA, Bryant CE (2013) Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1beta production. J Immunol 191(10):5239–5246. doi:10.4049/jimmunol.1301581

    Article  CAS  PubMed  Google Scholar 

  • Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O (2005) Plague bacteria target immune cells during infection. Science 309(5741):1739–1741. doi:10.1126/science.1114580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy MW, Marre ML, Lesser CF, Mecsas J (2010) The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect Immun 78(6):2584–2598. doi:10.1128/IAI.00141-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald C, Vacratsis PO, Bliska JB, Dixon JE (2003) The yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem 278(20):18514–18523. doi:10.1074/jbc.M301226200

    Article  CAS  PubMed  Google Scholar 

  • McPhee JB, Mena P, Bliska JB (2010) Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect Immun 78(8):3529–3539. doi:10.1128/IAI.00269-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPhee JB, Mena P, Zhang Y, Bliska JB (2012) Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun 80(7):2519–2527. doi:10.1128/IAI.06364-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinzer U, Barreau F, Esmiol-Welterlin S, Jung C, Villard C, Leger T, Ben-Mkaddem S, Berrebi D, Dussaillant M, Alnabhani Z, Roy M, Bonacorsi S, Wolf-Watz H, Perroy J, Ollendorff V, Hugot JP (2012) Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 11(4):337–351. doi:10.1016/j.chom.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  • Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107(7):3076–3080. doi:10.1073/pnas.0913087107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills SD, Boland A, Sory MP, van der Smissen P, Kerbourch C, Finlay BB, Cornelis GR (1997) Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc Natl Acad Sci USA 94(23):12638–12643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnich SA, Rohde HN (2007) A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Adv Exp Med Biol 603:298–310. doi:10.1007/978-0-387-72124-8_27

    Article  PubMed  Google Scholar 

  • Mittal R, Peak-Chew SY, McMahon HT (2006) Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci USA 103(49):18574–18579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monack DM, Mecsas J, Ghori N, Falkow S (1997) Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci USA 94(19):10385–10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monack DM, Mecsas J, Bouley D, Falkow S (1998) Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J Exp Med 188(11):2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312(5777):1211–1214

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Pinedo C (2012) Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 738:124–143. doi:10.1007/978-1-4614-1680-7_8

    Article  CAS  PubMed  Google Scholar 

  • Nemeth J, Straley SC (1997) Effect of Yersinia pestis YopM on experimental plague. Infect Immun 65(3):924–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer LE, Hobbie S, Galan JE, Bliska JB (1998) YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Mol Microbiol 27(5):953–965

    Article  CAS  PubMed  Google Scholar 

  • Pechous RD, Sivaraman V, Stasulli NM, Goldman WE (2016) Pneumonic plague: the darker side of Yersinia pestis. Trends Microbiol 24(3):190–197. doi:10.1016/j.tim.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Peters KN, Dhariwala MO, Hughes Hanks JM, Brown CR, Anderson DM (2013) Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague. PLoS Pathog 9(4):e1003324. doi:10.1371/journal.ppat.1003324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philip NH, Brodsky IE (2012) Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol 2:149. doi:10.3389/fcimb.2012.00149

    Article  PubMed  PubMed Central  Google Scholar 

  • Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA, Zwack EE, Hu B, Fitzgerald L, Mauldin EA, Copenhaver AM, Shin S, Wei L, Parker M, Zhang J, Oberst A, Green DR, Brodsky IE (2014) Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling. Proc Natl Acad Sci USA 111(20):7385–7390. doi:10.1073/pnas.1403252111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. doi:10.1016/j.cell.2012.07.007

    PubMed  PubMed Central  Google Scholar 

  • Ratner D, Orning MP, Starheim KK, Marty-Roix R, Proulx MK, Goguen JD, Lien E (2016) Manipulation of IL-1beta and IL-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. J Biol Chem. doi:10.1074/jbc.M115.697698

    Google Scholar 

  • Rebeil R, Ernst RK, Jarrett CO, Adams KN, Miller SI, Hinnebusch BJ (2006) Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol 188(4):1381–1388. doi:10.1128/JB.188.4.1381-1388.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosadini CV, Zanoni I, Odendall C, Green ER, Paczosa MK, Philip NH, Brodsky IE, Mecsas J, Kagan JC (2015) A single bacterial immune evasion strategy dismantles both MyD88 and TRIF signaling pathways downstream of TLR4. Cell Host Microbe 18(6):682–693. doi:10.1016/j.chom.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JC (1968) Doctors afield: Alexandre Yersin. N Engl J Med 278(5):261–263. doi:10.1056/NEJM196802012780507

    Article  CAS  PubMed  Google Scholar 

  • Ruckdeschel K, Richter K (2002) Lipopolysaccharide desensitization of macrophages provides protection against Yersinia enterocolitica-induced apoptosis. Infect Immun 70(9):5259–5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruckdeschel K, Machold J, Roggenkamp A, Schubert S, Pierre J, Zumbihl R, Liautard JP, Heesemann J, Rouot B (1997) Yersinia enterocolitica promotes deactivation of macrophage mitogen-activated protein kinases extracellular signal-regulated kinase-1/2, p38, and c-Jun NH2-terminal kinase. Correlation with its inhibitory effect on tumor necrosis factor-alpha production. J Biol Chem 272(25):15920–15927

    Article  CAS  PubMed  Google Scholar 

  • Ruckdeschel K, Harb S, Roggenkamp A, Hornef M, Zumbihl R, Kohler S, Heesemann J, Rouot B (1998) Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J Exp Med 187(7):1069–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruckdeschel K, Richter K, Mannel O, Heesemann J (2001) Arginine-143 of Yersinia enterocolitica YopP crucially determines isotype-related NF-kappaB suppression and apoptosis induction in macrophages. Infect Immun 69(12):7652–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruckdeschel K, Pfaffinger G, Haase R, Sing A, Weighardt H, Hacker G, Holzmann B, Heesemann J (2004) Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173(5):3320–3328

    Article  CAS  PubMed  Google Scholar 

  • Ruter C, Silva MR, Grabowski B, Lubos ML, Scharnert J, Poceva M, von Tils D, Flieger A, Heesemann J, Bliska JB, Schmidt MA (2014) Rabbit monoclonal antibodies directed at the T3SS effector protein YopM identify human pathogenic Yersinia isolates. Int J Med Microbiol 304(3–4):444–451. doi:10.1016/j.ijmm.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  • Schesser K, Spiik AK, Dukuzumuremyi JM, Neurath MF, Pettersson S, Wolf-Watz H (1998) The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol Microbiol 28(6):1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Schoberle TJ, Chung LK, McPhee JB, Bogin B, Bliska JB (2016) Uncovering an important role for YopJ in the inhibition of Caspase-1 in activated macrophages and promoting Yersinia pseudotuberculosis virulence. Infect Immun. doi:10.1128/IAI.00843-15

    Google Scholar 

  • Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192. doi:10.1038/nature13683

    CAS  PubMed  Google Scholar 

  • Shin S, Brodsky IE (2015) The inflammasome: learning from bacterial evasion strategies. Semin Immunol 27(2):102–110. doi:10.1016/j.smim.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman V, Pechous RD, Stasulli NM, Eichelberger KR, Miao EA, Goldman WE (2015) Yersinia pestis activates both IL-1beta and IL-1 receptor antagonist to modulate lung inflammation during pneumonic plague. PLoS Pathog 11(3):e1004688. doi:10.1371/journal.ppat.1004688

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorslund SE, Edgren T, Pettersson J, Nordfelth R, Sellin ME, Ivanova E, Francis MS, Isaksson EL, Wolf-Watz H, Fallman M (2011) The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLoS ONE 6(2):e16784. doi:10.1371/journal.pone.0016784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchinsky MB, Garaude J, Martin AP, Blander JM (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458(7234):78–82. doi:10.1038/nature07781

    Article  CAS  PubMed  Google Scholar 

  • Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1):10–21. doi:10.1016/j.chom.2009.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Torres A, Jones-Carson J, Baumler AJ, Falkow S, Valdivia R, Brown W, Le M, Berggren R, Parks WT, Fang FC (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401(6755):804–808. doi:10.1038/44593

    Article  CAS  PubMed  Google Scholar 

  • Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89. doi:10.1146/annurev.micro.59.030804.121320

    Article  CAS  PubMed  Google Scholar 

  • Vladimer GI, Marty-Roix R, Ghosh S, Weng D, Lien E (2013) Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol 16(1):23–31. doi:10.1016/j.mib.2012.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI, Kaiser WJ, Mocarski ES, Pouliot K, Chan FK, Kelliher MA, Harris PA, Bertin J, Gough PJ, Shayakhmetov DM, Goguen JD, Fitzgerald KA, Silverman N, Lien E (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci USA 111(20):7391–7396. doi:10.1073/pnas.1403477111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesley IV, Bhaduri S, Bush E (2008) Prevalence of Yersinia enterocolitica in market weight hogs in the United States. J Food Prot 71(6):1162–1168

    PubMed  Google Scholar 

  • Wren BW (2003) The yersiniae–a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol 1(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Wynosky-Dolfi MA, Snyder AG, Philip NH, Doonan PJ, Poffenberger MC, Avizonis D, Zwack EE, Riblett AM, Hu B, Strowig T, Flavell RA, Jones RG, Freedman BD, Brodsky IE (2014) Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med 211(4):653–668. doi:10.1084/jem.20130627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zauberman A, Cohen S, Mamroud E, Flashner Y, Tidhar A, Ber R, Elhanany E, Shafferman A, Velan B (2006) Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis. Infect Immun 74(6):3239–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zauberman A, Tidhar A, Levy Y, Bar-Haim E, Halperin G, Flashner Y, Cohen S, Shafferman A, Mamroud E (2009) Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague. PLoS ONE 4(6):e5938. doi:10.1371/journal.pone.0005938

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ting AT, Marcu KB, Bliska JB (2005) Inhibition of MAPK and NF-kappa B pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J Immunol 174(12):7939–7949

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB, Bliska JB (2011) A Yersinia effector with enhanced inhibitory activity on the NF-kappaB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoS Pathog 7(4):e1002026. doi:10.1371/journal.ppat.1002026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Lilo S, Mena P, Bliska JB (2012) YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense. PLoS ONE 7(4):e36019. doi:10.1371/journal.pone.0036019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J, Wolf B, Dixit VM (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med 202(10):1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimbler DL, Schroeder JA, Eddy JL, Lathem WW (2015) Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat Commun 6:7487. doi:10.1038/ncomms8487

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwack EE, Snyder AG, Wynosky-Dolfi MA, Ruthel G, Philip NH, Marketon MM, Francis MS, Bliska JB, Brodsky IE (2014) Inflammasome activation in response to the Yersinia Type III secretion system requires hyperinjection of translocon proteins YopB and YopD. MBio 6(1). doi:10.1128/mBio.02095-14

Download references

Acknowledgments

We would like to thank Sunny Shin and members of the Brodsky and Shin labs for scientific discussion. Work in the Brodsky lab is supported by the NIH-NIAID and a BWF Investigator in the Pathogenesis of Infectious Disease Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Brodsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Philip, N.H., Zwack, E.E., Brodsky, I.E. (2016). Activation and Evasion of Inflammasomes by Yersinia . In: Backert, S. (eds) Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-319-41171-2_4

Download citation

Publish with us

Policies and ethics