Skip to main content

Achievement of a Multi DOF Myoelectric Interface for Hand Prosthesis

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9712))

Included in the following conference series:

  • 1689 Accesses

Abstract

Nowadays, bionic systems are a real revolution and they are increasingly used by thousands of victims of amputation all over the world. Whether of lower limb or upper limb amputation, bionic systems are a concrete solution that helps people to outdo disability. People with amputated leg can anew walk and person with amputated hand can afresh hold and manipulate objects by dint of myoelectric systems. All bionic systems are built in order to be as much as possible humanoid, regarding their aspect or their functioning, that is why a myoelectric interface should be intuitive and able to analyze and decode by itself the myoelectric excitation to command prosthesis. This paper is about the design and the achievement of a Multi-DOF myoelectric interface used to command an artificial hand that we designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. TouchBionics Active Prosthesis. http://www.touchbionics.com

  2. Kuiken, T.: Consideration of nerve-muscle grafts to improve the control of artificial arms. Technol. Disabil. 15, 105–111 (2003)

    Google Scholar 

  3. Miller, L., Lipschutz, R., Stubblefield, K., Lock, B.A., Huang, H., Williams, T., Weir, R., Kuiken, T.: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch. Phys. Med. Rehabil. 89, 2057–2065 (2008)

    Article  Google Scholar 

  4. Kuiken, T., Dumanian, G., Lipschutz, R., Miller, L., Stubblefield, K.: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004)

    Google Scholar 

  5. Kuiken, T., Li, G., Lock, B.A., Lipschutz, R., Miller, L., Stubblefield, K., Englehart, K.: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. J. Am. Med. Assoc. 301, 619–628 (2009)

    Article  Google Scholar 

  6. Zhou, P., Kuiken, T.: Eliminating cardiac contamination from myoelectric control signals developed by targeted muscle reinnervation. Physiol. Meas. 27, 1311 (2006)

    Article  Google Scholar 

  7. Raspopovic, S., Capogrosso, M., Petrini, F.M., Bonizzato, M., Rigosa, J., Pino, J.D., Carpaneto, J., Controzzi, M., Boretius, T., Fernandez, E., Granata, G., Oddo, C.M., Citi, L., Ciancio, L.A., Cipriani, C., Carrozza, M.C., Jensen, E., Guglielmelli, T., Stieglitz, P.M., Rossini, S.: Restoring natural sensory feedback in real-time bidirectional hand prosthsis. SciTransl. Med. 6, 222 (2014)

    Google Scholar 

  8. Shannon, G.F.: A comparison of alternative means of providing sensory feedback on upper limb prosthesis. Med. Biol. Eng. 14, 284–294 (1976)

    Article  Google Scholar 

  9. Kaczmarek, K.A., Webster, J.G., Rita, P.B.Y., Tompkins, W.G.: Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38, 1–16 (1991)

    Article  Google Scholar 

  10. Pylatiuk, C., Kargov, A., Schulz, S.: Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. Am. Acad. Orthotists Prosthetists 18, 5–61 (2006)

    Google Scholar 

  11. Hu, X., Whang, Z., Ren, X.: Classification of surface EMG signal using relative wavelet packet energy. Comput. Methods Programs Biomed. 79, 189–195 (2005)

    Article  Google Scholar 

  12. Johansson, R.S., Westling, G.: Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp. Brain Res. 66, 128–140 (1987)

    Article  Google Scholar 

  13. Benchabane, S.I., Saadia, N.: Achievement of a myoelectric clamp provided by an optical shifting control for upper limb amputations. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) ICSI-CCI 2015. LNCS, vol. 9141, pp. 180–188. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  14. Zipp, P.: Effect of electrode geometry on the selectivity of myoelectric recordings with surface electrodes. Eur. J. Appl. Physiol. Occup. Physiol. 50, 35–40 (1986)

    Article  Google Scholar 

  15. Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374 (2000)

    Article  Google Scholar 

  16. Roy, S., De Luca, G., Cheng, M., Johansson, A., Gilmore, L., De Luca, J.: Electro-mechanical stability of surface EMG sensors. Med. Bio. Eng. Comput. 45, 447–457 (2007)

    Article  Google Scholar 

  17. Ajiboye, A.B., Weir, R.: A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Neural Syst. Rehabil. 13, 280–291 (2005)

    Article  Google Scholar 

  18. Hargrove, L., Zhou, P., Englehart, K., Kuiken, T.: The effect of ECG interference on pattern recognition based myoelectric control for targeted muscle reinnervated patients. IEEE Trans. Biomed. Eng. 56, 2197–2201 (2009)

    Article  Google Scholar 

  19. Jiang, N., Englehart, K.B., Parker, A.: Extracting simultaneously and proportionally neural control information for multiple DOF prosthesis from the surface electromyographie signal. IEEE Trans. Biomed. 56, 1070–1080 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane Ibrahim Benchabane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Benchabane, S.I., Saadia, N., Ramdane-Cherif, A. (2016). Achievement of a Multi DOF Myoelectric Interface for Hand Prosthesis. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41000-5_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40999-3

  • Online ISBN: 978-3-319-41000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics