Skip to main content

Astrocyte Dysfunction in Developmental Neurometabolic Diseases

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 949))

Abstract

Astrocytes play crucial roles in maintaining brain homeostasis and in orchestrating neural development, all through tightly coordinated steps that cooperate to maintain the balance needed for normal development. Here, we review the alterations in astrocyte functions that contribute to a variety of developmental neurometabolic disorders and provide additional data on the predominant role of astrocyte dysfunction in the neurometabolic neurodegenerative disease glutaric acidemia type I. Finally, we describe some of the therapeutical approaches directed to neurometabolic diseases and discuss if astrocytes can be possible therapeutic targets for treating these disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALS:

Amyotrophic Lateral Sclerosis

AQP4:

Aquaporin 4

BBB:

Blood–Brain Barrier

GA:

Glutaric Acid

GA-I:

Glutaric Acidemia Type I

GCDH:

Glutaryl CoA Dehydrogenase

GDNF:

Glial-Derived Neurotrophic Factor

GFAP:

Glial Fibrillary Acidic Protein

Icv:

Intracerebroventricular

IEM:

Inborn Errors of Metabolism

MAPK:

Mitogen-Activated Protein Kinases

MLC:

Megalencephalic Leukoencephalopathy with Subcortical Cysts

NPC:

Niemann-Pick type C Disease

NVU:

Neurovascular Unit

PC:

Pyruvate Carboxylase

VWM:

Vanishing White Matter

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Araque A (2008) Astrocytes process synaptic information. Neuron Glia Biol 4:3–10

    Article  PubMed  Google Scholar 

  • Bähr O, Mader I, Zschocke J et al (2002) Adult onset glutaric aciduria type I presenting with a leukoencephalopathy. Neurology 59(11):1802–1804

    Article  PubMed  Google Scholar 

  • Bain JM, Ziegler A, Yang Z et al (2010) TGFß1 stimulates the over-production of white matter astrocytes from precursors of the “brain marrow” in a rodent model of neonatal encephalopathy. PLoS ONE 5(3):e9567

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnabe-Heider F, Wasylnka JA, Fernandes KJL et al (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265

    Article  CAS  PubMed  Google Scholar 

  • Barres BA, Schmid R, Sendnter M et al (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118(1):283–295

    CAS  PubMed  Google Scholar 

  • Boor PK, de Groot K, Waisfisz Q et al (2005) MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol 64:412–419

    Article  CAS  PubMed  Google Scholar 

  • Borbon I, Totenhagen J, Fiorenza MT et al (2012) Niemann-Pick C1 mice, a model of ‘‘juvenile Alzheimer’s disease’’, with normal gene expression in neurons and fibrillary astrocytes show long term survival and delayed neurodegeneration. J Alzheimers Dis 30:875–887

    CAS  PubMed  Google Scholar 

  • Brusilow SW, Koehler RC, Traystman RJ et al (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7(4):452–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugiani M, Boor I, van Kollenburg B et al (2011) Defective glial maturation in vanishing white matter disease. J Neuropathol Exp Neurol 70:69–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Butterworth RF (2010) Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem Int 57:383–388

    Article  CAS  PubMed  Google Scholar 

  • Cho W, Brenner M, Peters N et al (2010) Drug screening to identify suppressors of GFAP expression. Hum Mol Genet 19:3169–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung W-S, Clarke LE, Wang GX et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  PubMed  Google Scholar 

  • Dodla MC, Mumaw J, Stice SL (2010) Role of astrocytes, soluble factors, cells adhesion molecules and neurotrophins in functional synapse formation: implications for human embryonic stem cell derived neurons. Curr Stem Cell Res Ther 5:251–260

    Article  CAS  PubMed  Google Scholar 

  • Duarri A, Lopez de Heredia M, Capdevila-Nortes X et al (2011) Knockdown of MLC1 in primary astrocytes causes cell vacuolation: a MLC disease cell model. Neurobiol Dis 43:228–238

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich H, Weissenborn K, Prange H et al (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40(12):e647–656

    Article  CAS  PubMed  Google Scholar 

  • Eroglu C, Allen NJ, Susman MW et al (2009) Gabapentin receptor alpha 2 delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freudenberg F, Lukacs Z, Ullrich K (2004) 3-Hydroxyglutaric acid fails to affect the viability of primary neuronal rat cells. Neurobiol Dis 16(3):581–584

    Article  CAS  PubMed  Google Scholar 

  • Funk CB, Prasad AN, Frosk P et al (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128:711–722

    Article  PubMed  Google Scholar 

  • Garcia-Cazorla A, Rabier D, Touati G et al (2006) Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol 59:121–127

    Article  PubMed  Google Scholar 

  • Ge W-P, Miyawaki A, Gage FH et al (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman SI, Norenberg MD, Shikes RH et al (1977) Glutaric aciduria: biochemical and morphologic considerations. J Pediatr 90:746–750

    Article  CAS  PubMed  Google Scholar 

  • Haberle J, Gorg B, Rutsch F et al (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–1933

    Article  PubMed  Google Scholar 

  • Haberle J, Shahbeck N, Ibrahim K et al (2011) Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 103(1):89–91

    Article  PubMed  Google Scholar 

  • Hagemann TL, Boelens WC, Wawrousek EF et al (2009) Suppression of GFAP toxicity by αβ-crystallin in mouse models of Alexander disease. Hum Mol Genet 18(7):1190–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Chen M, Wang F et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmuth L (2001) Glia tell neurons to build synapses. Science 291:569–570

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Investig 123:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isasi E, Barbeito L, Olivera-Bravo S (2014) Increased blood–brain barrier permeability and alterations in perivascular astrocytes and pericytes induced by intracisternal glutaric acid. Fluids Barriers CNS 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Jafari P, Braissant O, Zavadakova P et al (2013) Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I. PLoS ONE 8(1):e53735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeller DM, Woontner M, Crnic LS et al (2002) Biochemical, pathologic and behavioral analysis of a mouse model of glutaricacidemia type I. Hum Mol Genet 11:347–357

    Article  CAS  PubMed  Google Scholar 

  • Koeller DM, Sauer S, Wajner M et al (2004) Animal models for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27:813–818

    Article  CAS  PubMed  Google Scholar 

  • Kölker S, Boy SP, Heringer J et al (2012) Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I—a decade of experience. Mol Genet Metab 107(1–2):72–80

    Article  PubMed  Google Scholar 

  • Lamp J, Keyser B, Koeller DM et al (2011) Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem 286:17777–17784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liem RK, Messing A (2009) Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Investig 119:1814–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magni DV, Furian AF, Oliveira MS et al (2009) Kinetic characterization of l-[(3)H]glutamate uptake inhibition and increase oxidative damage induced by glutaric acid in striatal synaptosomes of rats. Int J Dev Neurosci 27:65–72

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689

    Article  CAS  PubMed  Google Scholar 

  • Messing A, Brenner M, Feany MB et al (2012) Alexander disease. J Neurosci 32(15):5017–5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyajima H (2015) Aceruloplasminemia. Neuropathology 35:83–90

    Article  CAS  PubMed  Google Scholar 

  • Nash B, Thomson CE, Linington C et al (2011) Functional duality of astrocytes in myelination. J Neurosci 31:13028–31308

    Article  CAS  PubMed  Google Scholar 

  • Oide T, Yoshida K, Kaneko K et al (2006) Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol 32:170–176

    Article  CAS  PubMed  Google Scholar 

  • Olivera-Bravo S, Fernández A, Latini A et al (2008) Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: possible implications for GAI pathogenesis. Neurobiol Dis 32:528–534

    Article  Google Scholar 

  • Olivera-Bravo S, Fernández A, Sarlabós MN et al (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of Glutaric Acidemia-I. PLoS ONE 6:e20831–20840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera-Bravo S, Isasi E, Fernández A et al (2014) White matter injury induced by perinatal exposure to glutaric acid. Neurotox Res 25:381–391

    Article  CAS  PubMed  Google Scholar 

  • Patel SC, Suresh S, Kumar U et al (1999) Localization of Niemann-Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann-Pick type C disease. Proc Natl Acad Sci USA 96:1657–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098

    Article  PubMed  Google Scholar 

  • Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7(4):413–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas GZ, Vargas CR, Wajner M (2014) L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 533:469–476

    Article  CAS  PubMed  Google Scholar 

  • Ridder MC, Boor I, Lodder JC et al (2011) Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain 134:3342–3354

    Article  PubMed  Google Scholar 

  • Robinson BH, Oei J, Sherwood WG et al (1984) The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 36:283–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  CAS  PubMed  Google Scholar 

  • Ruiz Pons M, Sanchez-Valverde Visus F, Dalmau Serra J et al (2007) Nutritional treatment of inborn errors of metabolism, 1st edn. Ergon, Madrid

    Google Scholar 

  • Saez JP, Orellana JA, Vega-Riveros N et al (2013) Disruption in connexin-based communication is associated with intracellular Ca2+ signal alterations in astrocytes from Niemann-Pick Type C mice. PLoS ONE 8(8):e71361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scriver CR, Beaudet AL, Sly WS, Valle D (1995) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Seminotti B, da Rosa MS, Fernandes CG et al (2012) Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration. Mol Genet Metab 106:31–38

    Article  CAS  PubMed  Google Scholar 

  • Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss KA, Puffenberger EG, Robinson DL et al (2003) Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Gen Part C Semin Med Gen 121C:38–52

    Article  Google Scholar 

  • Strauss KA, Lazovic J, Wintermark M et al (2007) Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain 130:1905–1920

    Article  PubMed  Google Scholar 

  • van der Knaap MS, Pronk JC, Scheper GC (2006) Vanishing white matter disease. Lancet Neurol 5:413–423

    Article  PubMed  Google Scholar 

  • Vargas MR, Johnson JA (2010) Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 7(4):471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Sofroniew MV, Messing A et al (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 5:4(3)

    Google Scholar 

  • Verkhratsky A, Nedergaard M, Hertz L (2015) Why are astrocytes important? Neurochem Res 40(2):389–401

    Article  CAS  PubMed  Google Scholar 

  • Wu AS, Kiaei M, Aguirre N et al (2003) Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J Neurochem 85:142–150

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7(4):439–451

    Article  CAS  PubMed  Google Scholar 

  • Zinnanti WJ, Lazovic J, Housman C et al (2007) Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest 117:3258–3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Olivera-Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivera-Bravo, S., Isasi, E., Fernández, A., Casanova, G., Rosillo, J.C., Barbeito, L. (2016). Astrocyte Dysfunction in Developmental Neurometabolic Diseases. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_11

Download citation

Publish with us

Policies and ethics