Skip to main content

Resistance to Therapy

  • Chapter
  • First Online:
Book cover Lung Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 170))

Abstract

Identification of driver mutations in adenocarcinoma of the lung has revolutionized the treatment of this disease. It is now standard of care to look for activating mutations in epidermal growth factor receptor (EGFR), and translocations in anaplastic lymphoma kinase (ALK) or ROS1 in all newly diagnosed adenocarcinoma of the lung, and in many patients with squamous cell carcinoma as well. Recognition of multiple other lung cancer driver mutations has also expanded treatment options. Targeted treatments of these mutations lead to rapid and prolonged responses, but resistance inevitably develops. Until recently, traditional chemotherapy was the only alternative at that time, but better understanding of resistance mechanisms has lead to additional therapeutic options. These mechanisms of resistance and treatments are the focus of this chapter. Understanding of mechanisms of chemotherapy resistance is touched upon, along with a brief discussion of immune checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subramanian J, Govindan R (2008) Molecular genetics of lung cancer in people who have never smoked. Lancet Oncol 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  2. Chougule A et al (2013) Frequency of EGFR mutations in 907 lung adenocarcioma patients of Indian ethnicity. PLoS ONE 8(10):e76164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Couraud S et al (2015) BioCAST/IFCT-1002: epidemiological and molecular features of lung cancer in never-smokers. Eur Respir J 45:1403–1414

    Google Scholar 

  4. Zhang Y et al (2012) Frequency of driver mutations in lung adenocarcinoma from female never-smokers varies with histologic subtypes and age at diagnosis. Clin Cancer Res 18(7):1947–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drilon A et al (2015) Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in “driver-negative” lung adenocarcinomas. Clin Cancer Res 21:3631–3639

    Google Scholar 

  6. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  7. Carpenter G, King L Jr, Cohen S (1978) Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 276(5686):409–410

    Article  CAS  PubMed  Google Scholar 

  8. Ullrich A et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309(5967):418–425

    Article  CAS  PubMed  Google Scholar 

  9. Garrett TP et al (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110(6):763–773

    Article  CAS  PubMed  Google Scholar 

  10. Lemmon MA et al (1997) Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J 16(2):281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogiso H et al (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110(6):775–787

    Article  CAS  PubMed  Google Scholar 

  12. Schlessinger J (1988) Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13(11):443–447

    Article  CAS  PubMed  Google Scholar 

  13. Rusch V et al (1997) Over expression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 3(4):515–522

    CAS  PubMed  Google Scholar 

  14. Sizeland AM, Burgess AW (1992) Anti-sense transforming growth factor alpha oligonucleotides inhibit autocrine stimulated proliferation of a colon carcinoma cell line. Mol Biol Cell 3(11):1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tateishi M et al (1990) Immunohistochemical evidence of autocrine growth factors in adenocarcinoma of the human lung. Cancer Res 50(21):7077–7080

    CAS  PubMed  Google Scholar 

  16. Veale D et al (1987) Epidermal growth factor receptors in non-small cell lung cancer. Br J Cancer 55(5):513–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Honegger AM et al (1987) Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell 51(2):199–209

    Article  CAS  PubMed  Google Scholar 

  18. Honegger AM et al (1987) A mutant epidermal growth factor receptor with defective protein tyrosine kinase is unable to stimulate proto-oncogene expression and DNA synthesis. Mol Cell Biol 7(12):4568–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Redemann N et al (1992) Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants. Mol Cell Biol 12(2):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wakeling AE et al (1996) Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res Treat 38(1):67–73

    Article  CAS  PubMed  Google Scholar 

  21. Wakeling AE et al (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62(20):5749–5754

    CAS  PubMed  Google Scholar 

  22. Fukuoka M et al (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21(12):2237–2246

    Article  CAS  PubMed  Google Scholar 

  23. Herbst RS et al (2002) Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J Clin Oncol 20(18):3815–3825

    Article  CAS  PubMed  Google Scholar 

  24. Hidalgo M et al (2001) Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 19(13):3267–3279

    CAS  PubMed  Google Scholar 

  25. Kris MG et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16):2149–2158

    Article  CAS  PubMed  Google Scholar 

  26. Miller VA et al (2004) Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 22(6):1103–1109

    Article  CAS  PubMed  Google Scholar 

  27. Nakagawa K et al (2003) Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (‘Iressa’, ZD1839) in Japanese patients with solid malignant tumors. Ann Oncol 14(6):922–930

    Article  CAS  PubMed  Google Scholar 

  28. Perez-Soler R et al (2004) Determinants of tumor response and survival with erlotinib in patients with non–small-cell lung cancer. J Clin Oncol 22(16):3238–3247

    Article  CAS  PubMed  Google Scholar 

  29. Ranson M et al (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20(9):2240–2250

    Article  CAS  PubMed  Google Scholar 

  30. Shepherd FA et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132

    Article  CAS  PubMed  Google Scholar 

  31. Thatcher N et al (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa survival evaluation in lung cancer). Lancet 366(9496):1527–1537

    Article  CAS  PubMed  Google Scholar 

  32. Peddicord S (2015) FDA approves targeted therapy for first-line treatment of patients with a type of metastatic lung cancer. US Food and Drug Administration

    Google Scholar 

  33. Kosaka T et al (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64(24):8919–8923

    Article  CAS  PubMed  Google Scholar 

  34. Lynch TJ et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  CAS  PubMed  Google Scholar 

  35. Paez JG et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  CAS  PubMed  Google Scholar 

  36. Pao W et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101(36):13306–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shigematsu H et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97(5):339–346

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X et al (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149

    Article  CAS  PubMed  Google Scholar 

  39. Carey KD et al (2006) Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res 66(16):8163–8171

    Article  CAS  PubMed  Google Scholar 

  40. Yun CH et al (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 105(6):2070–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fukuoka M et al (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 29(21):2866–2874

    Article  CAS  PubMed  Google Scholar 

  42. Mitsudomi T et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11(2):121–128

    Article  CAS  PubMed  Google Scholar 

  43. Rosell R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13(3):239–246

    Article  CAS  PubMed  Google Scholar 

  44. Zhou C et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12(8):735–742

    Article  CAS  PubMed  Google Scholar 

  45. Sequist LV et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31(27):3327–3334

    Article  CAS  PubMed  Google Scholar 

  46. Sandlund JT et al (1994) Clinicopathologic features and treatment outcome of children with large-cell lymphoma and the t(2;5)(p23;q35). Blood 84(8):2467–2471

    CAS  PubMed  Google Scholar 

  47. Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  CAS  PubMed  Google Scholar 

  48. Birchmeier C, Sharma S, Wigler M (1987) Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A 84(24):9270–9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li C et al (2011) Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS ONE 6(11):e28204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwak EL et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davies KD, Doebele RC (2013) Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 19(15):4040–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Camidge DR et al (2012) Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 13(10):1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw AT et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371(21):1963–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shaw AT et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394

    Article  CAS  PubMed  Google Scholar 

  55. Solomon BJ et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177

    Article  PubMed  CAS  Google Scholar 

  56. Sequist LV et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3(75):75ra26

    Google Scholar 

  57. Arcila ME et al (2011) Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res 17(5):1169–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu HA et al (2013) Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 19(8):2240–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kobayashi S et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792

    Article  CAS  PubMed  Google Scholar 

  60. Pao W et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Janjigian YY et al (2014) Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov 4(9):1036–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jackman D et al (2010) Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 28(2):357–360

    Article  CAS  PubMed  Google Scholar 

  63. Katakami N et al (2013) LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 31(27):3335–3341

    Article  CAS  PubMed  Google Scholar 

  64. Janjigian YY (2014) Dual inhibition of EGFR with Afatinib and Cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Dis 4:1036–1045

    Google Scholar 

  65. Sequist LV, Soria J-C, Gadgeel SM, Wakelee HA, Camidge DR, Varga A, Solomon BJ, Papadimitrakopoulou V, Jaw-Tsai SS, Caunt L, Kaur P, Rolfe L, Allen AR, Goldman JW (2014) First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). In: 2014 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  66. Sequist LV et al (2015) Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med 372(18):1700–1709

    Article  PubMed  Google Scholar 

  67. Sequist LV, Goldman JW, Wakelee HA et al (2015) Efficacy of rociletinib (CO-1686) in plasma-genotyped T790M-positive non-small cell lung cancer (NSCLC) patients (pts). In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  68. Janne PA, Ramalingam SS, Yang JC-H, Ahn M-J, Kim D-W, Kim S-W, Planchard D, Ohe Y, Felip E, Watkins C, Cantarini M, Ghiorghiu S, Ranson M (2014) Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor–resistant non-small cell lung cancer (NSCLC). J Clin Oncol (in ASCO. Chicago)

    Google Scholar 

  69. Jänne PA et al (2015) AZD9291 in EGFR inhibitor-resistant non–small-cell lung cancer. N Engl J Med 372(18):1689–1699

    Article  PubMed  Google Scholar 

  70. Tan D, Seto T, Leighl N et al (2015) First-in-human phase I stud; of EGF816, a third generation, mutant-selective EGFR tyrosine kinase inhibitor, in advanced non-small cell lung cancer (NSCLC) harboring T790M. In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  71. Goto Y, Nokihara H, Marakami H et al (2015) ASP8273, a mutant-selective irreversible EGFR inhibitor in patients (pts) with NSCLC harboring EGFR activating mutations: preliminary results of first-in-human phase I study in Japan. In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  72. Park K, Lee JS, Lee KH et al (2015) Updated safety and efficacy results from phase I/II study of HM61713 in patients (pts) with EGFR mutation positive non-small cell lung cancer (NSCLC) who failed previous EGFR-tyrosine kinase inhibitor (TKI). In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  73. Ercan D et al (2015) EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin Cancer Res 21(17):3913–3923

    Article  CAS  PubMed  Google Scholar 

  74. Morgillo F et al (2006) Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 66(20):10100–10111

    Article  CAS  PubMed  Google Scholar 

  75. Bean J et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cappuzzo F et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27(10):1667–1674

    Article  PubMed  PubMed Central  Google Scholar 

  77. Engelman JA et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  CAS  PubMed  Google Scholar 

  78. Scagliotti GV, Novello S, von Pawel J (2013) The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev 39(7):793–801

    Article  CAS  PubMed  Google Scholar 

  79. Yano S et al (2008) Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 68(22):9479–9487

    Article  CAS  PubMed  Google Scholar 

  80. Yano S et al (2011) Hepatocyte growth factor expression in EGFR mutant lung cancer with intrinsic and acquired resistance to tyrosine kinase inhibitors in a Japanese cohort. J Thorac Oncol 6(12):2011–2017

    Article  PubMed  Google Scholar 

  81. Terai H et al (2013) Activation of the FGF2-FGFR1 autocrine pathway: a novel mechanism of acquired resistance to gefitinib in NSCLC. Mol Cancer Res 11(7):759–767

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Z et al (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44(8):852–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harada D et al (2012) JAK2-related pathway induces acquired erlotinib resistance in lung cancer cells harboring an epidermal growth factor receptor-activating mutation. Cancer Sci 103(10):1795–1802

    Article  CAS  PubMed  Google Scholar 

  84. Sos ML et al (2009) PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res 69(8):3256–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spigel D, Edelman M, O’Byrne K, Paz-Ares L, Shames DS, Yu W, Paton VE, Mok T (2014) Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAM4971g) global trial. In: 2014 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  86. Eisert A, Scheffler M, Michels S et al (2015) Genetic variability and clinical presentation of patients with non-small cell lung cancer (NSCLC) harboring MET-amplifications. In: 2105 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  87. Jones RL et al (2015) Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors. Clin Cancer Res 21(4):693–700

    Article  CAS  PubMed  Google Scholar 

  88. Puzanov I et al (2015) A phase I study of continuous oral dosing of OSI-906, a dual inhibitor of insulin-like growth factor-1 and insulin receptors, in patients with advanced solid tumors. Clin Cancer Res 21(4):701–711

    Article  CAS  PubMed  Google Scholar 

  89. Tan DS-W, Lim KH, Tai WM, Ahmad A, Pan S, Ng QS, Ang M-K, Gogna A, Ng YL, Tan BS, Lee HY, Krisna SS, Lau DPX, Zhong L, Iyer G, Chowbay B, Lim AST, Takano A, Lim W-T, Tan E-H (2013) A phase Ib safety and tolerability study of a pan class I PI3K inhibitor buparlisib (BKM120) and gefitinib (gef) in EGFR TKI-resistant NSCLC. In: 2013 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  90. Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121(4):1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peyton JD, Rodon Ahnert J, Burris H, Britten C, Chen LC, Tabernero J, Duval V, Rouyrre N, Silva AP, Quadt C, Baselga J (2011) A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion system (SDS) sachet, in patients with advanced solid tumors. In: 2011 ASCO annual meeting on journal of clinical oncology

    Google Scholar 

  92. Lara P, Longmate J, Mack PC, Kelly K, Socinski MA, Salgia R, Gitlitz BJ, Li T, Koczywas M, Reckamp KL, Gandara DR (2014) Phase II study of the AKT inhibitor MK-2206 plus erlotinib (E) in patients (pts) with advanced non-small cell lung cancer (NSCLC) who progressed on prior erlotinib: a California Cancer Consortium Phase II trial (NCI 8698). In: 2014 ASCO annual meeting on journal of clinical oncology

    Google Scholar 

  93. Nurwidya F et al (2012) Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat 44(3):151–156

    Article  PubMed  PubMed Central  Google Scholar 

  94. Batlle E et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89

    Article  CAS  PubMed  Google Scholar 

  95. Cano A et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83

    Article  CAS  PubMed  Google Scholar 

  96. Smit MA et al (2009) A twist-snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol 29(13):3722–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang J et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  98. Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4(8):657–665

    Article  PubMed  CAS  Google Scholar 

  99. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    Article  CAS  PubMed  Google Scholar 

  100. Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 23(10):912–923

    Article  CAS  PubMed  Google Scholar 

  101. Lee JM et al (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garofalo M et al (2012) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18(1):74–82

    CAS  Google Scholar 

  103. Yauch RL et al (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11(24 Pt 1):8686–8698

    Article  CAS  PubMed  Google Scholar 

  104. Reka AK et al (2010) Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol Cancer Ther 9(12):3221–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Choi YL et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739

    Article  CAS  PubMed  Google Scholar 

  106. Katayama R et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 4(120):120ra17

    Google Scholar 

  107. Heuckmann JM et al (2011) ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res 17(23):7394–7401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lovly CM, Pao W (2012) Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med 4(120):120ps2

    Google Scholar 

  109. Sasaki T et al (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71(18):6051–6060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun HY, Ji FQ (2012) A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK. Biochem Biophys Res Commun 423(2):319–324

    Article  CAS  PubMed  Google Scholar 

  111. Awad MM et al (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 368(25):2395–2401

    Article  CAS  PubMed  Google Scholar 

  112. Davies KD et al (2013) Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS ONE 8(12):e82236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Shaw AT et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(13):1189–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Friboulet L et al (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4(6):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gadgeel SM et al (2014) Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 15(10):1119–1128

    Article  CAS  PubMed  Google Scholar 

  116. Ou SHI, Ahn JS, Petris LD et al (2015) Efficacy and safety of the ALK inhibitor alectinib in ALK+ non-small cell lung cancer (NSCLC) patients who have failed prior crizotinib: an open-label, single-arm, global phase 2 study (NP28673). In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  117. Gandhi L, Shaw A, Gadgeel SM et al (2015) A phase II, open-label, multicenter study of the ALK inhibitor alectinib in an ALK+ non-small-cell lung cancer (NSCLC) U.S./Canadian population who had progressed on crizotinib (NP28761). In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  118. Katayama R et al (2014) Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor Alectinib. Clin Cancer Res 20(22):5686–5696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Camidge DR, Bazhenova L, Salgia R et al (2015) Safety and efficacy of brigatinib (AP26113) in advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  120. Arkenau HT, Sachdev JC, Mita MM et al (2015) Phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer. In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  121. Pall G (2015) The next-generation ALK inhibitors. Curr Opin Oncol 27(2):118–124

    Article  CAS  PubMed  Google Scholar 

  122. Yamaguchi N et al (2014) Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer 83(1):37–43

    Article  PubMed  Google Scholar 

  123. Katayama R et al (2015) Cabozantinib overcomes Crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res 21(1):166–174

    Article  CAS  PubMed  Google Scholar 

  124. Zou HY et al (2015) PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc Natl Acad Sci U S A 112:3493–3498

    Google Scholar 

  125. Shaw AT, Bauer TM, Felip E et al (2015) Clinical activity and safety of PF-06463922 from a dose escalation study in patients with advanced ALK+ or ROS1 + NSCLC. In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  126. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  CAS  PubMed  Google Scholar 

  127. Shimamura T et al (2005) Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res 65(14):6401–6408

    Article  CAS  PubMed  Google Scholar 

  128. Kobayashi N et al (2012) The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor. Lung Cancer 75(2):161–166

    Article  PubMed  Google Scholar 

  129. Normant E et al (2011) The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene 30(22):2581–2586

    Article  CAS  PubMed  Google Scholar 

  130. Sang J et al (2013) Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 3(4):430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sequist LV et al (2010) Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol 28(33):4953–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Piotrowska Z, Costa DB, Huberman M et al (2015) Activity of AUY922 in NSCLC patients with EGFR exon 20 insertions. In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  133. Schiller JH et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346(2):92–98

    Article  CAS  PubMed  Google Scholar 

  134. Scagliotti GV et al (2012) Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer 13(5):391–395

    Article  CAS  PubMed  Google Scholar 

  135. Ceppi P et al (2006) Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 107(7):1589–1596

    Article  CAS  PubMed  Google Scholar 

  136. Shih C et al (1997) LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 57(6):1116–1123

    CAS  PubMed  Google Scholar 

  137. Takezawa K et al (2011) Thymidylate synthase as a determinant of pemetrexed sensitivity in non-small cell lung cancer. Br J Cancer 104(10):1594–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gan PP, Pasquier E, Kavallaris M (2007) Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res 67(19):9356–9363

    Article  CAS  PubMed  Google Scholar 

  139. Olaussen KA et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991

    Article  CAS  PubMed  Google Scholar 

  140. Wislez M et al (2014) Customized adjuvant phase II trial in patients with non-small-cell lung cancer: IFCT-0801 TASTE. J Clin Oncol 32(12):1256–1261

    Article  CAS  PubMed  Google Scholar 

  141. Friboulet L et al (2013) ERCC1 isoform expression and DNA repair in non–small-cell lung cancer. N Engl J Med 368(12):1101–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hirano F et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65(3):1089–1096

    CAS  PubMed  Google Scholar 

  143. Ansell SM et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  PubMed  CAS  Google Scholar 

  144. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Garon EB et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372: 2018–2028

    Google Scholar 

  146. Patnaik A et al (2015) Phase I study of Pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 21:4286–4293

    Google Scholar 

  147. Petrylak DP, Powles T, Bellmunt J, et al (2015) A phase Ia stu;y of MPDL3280A (anti-PDL1): Updated response and survival data in urothelial bladder cancer (UBC). In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  148. Rizvi NA et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265

    Article  CAS  PubMed  Google Scholar 

  149. Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330

    Article  CAS  PubMed  Google Scholar 

  150. Segal NH, Ou S, Balmanoukian AS et al (2015) Safety; and efficacy of MEDI4736, an anti-PD-L1 antibody, in patient from a squamous cell carcinoma of the head and neck (SCCHN) expansion cohort. In: 2015 ASCO annual meeting on journal of clinical oncology, Chicago

    Google Scholar 

  151. Sullivan RJ, Flaherty KT (2015) Pembrolizumab for treatment of patients with advanced or unresectable Melanoma. Clin Cancer Res 21:2892–2897

    Google Scholar 

  152. Akbay EA et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3(12):1355–1363

    Article  CAS  PubMed  Google Scholar 

  153. Chen N et al (2015) Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol 10(6):910–923

    Article  CAS  PubMed  Google Scholar 

  154. Tang Y et al (2015) The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget 6(16):14209–14219

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Wakelee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rivera, G., Wakelee, H.A. (2016). Resistance to Therapy. In: Reckamp, K. (eds) Lung Cancer. Cancer Treatment and Research, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-40389-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40389-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40387-8

  • Online ISBN: 978-3-319-40389-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics