Skip to main content

Turbulence Modeling Using Fractional Derivatives

  • Conference paper
  • First Online:
Mathematical Problems in Meteorological Modelling

Part of the book series: Mathematics in Industry ((TECMI,volume 24))

  • 1000 Accesses

Abstract

We propose a new two-dimensional turbulence model in this work. The main idea of the model is that the shear stresses are considered to be random variables and we assume that their differences with respect to time are Lévy-type distributions. This is a generalization of the classical Newton’s law of viscosity. We tested the model on the classical Backward Facing Step benchmark problem. The simulation results are in a good accordance with real measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, E.W., Johnston, J.P.: Effects of the separating shear layer on the Reattachment length and wall shear stress. Exp. Fluids 6, 493–499 (1988)

    Google Scholar 

  2. Anwar-ul-Haque, Ahmad, F., Yamada, S., Chaudhry, S.R.: Assessment of turbulence models for turbulent flow over backward facing step. Proc. World Congr. Eng. 1, 1340 (2007)

    Google Scholar 

  3. Gartling, D.K.: A test problem for outflow boundary conditions—flow over a backward-facing step. Int. J. Numer. Methods Fluids 11, 953–967 (1990)

    Article  Google Scholar 

  4. Harlow, F.H., Welch, E.J.: Numerical calculation of time-dependent viscous incompressible flow with free surface. Phys. Fluids 8 (12), 2182–2189 (1965)

    Article  MATH  Google Scholar 

  5. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, T., Mateescu, D.: Experimental and numerical investigation of 2-D backward-facing step flow. J. Fluids Struct. 12, 703–716 (1998)

    Article  Google Scholar 

  7. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36 (4), 394–419 (1963)

    Article  Google Scholar 

  8. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sohn, J.: Evaluation of FIDAP on some classical laminar and turbulent benchmarks. Int. J. Numer. Methods Fluids 8, 1469–1490 (1988)

    Article  Google Scholar 

  10. Tuan, Vu.K., Gorenflo, R.: Extrapolation to the limit for numerical fractional differentiation. Z. Angew. Math. Mech. 75, 646–648 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support of the Hungarian National Research Fund OTKA (grant K112157) and the useful advice for Ferenc Izsák and Gergő Nemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla J. Szekeres .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof

(Theorem 3.1) Let \(\alpha \in \mathbb{C}\) be any fixed complex number. Let x be a real or complex number such that | x |  < 1, then

$$\displaystyle{ (1 - x)^{\alpha } =\sum _{ N=0}^{\infty }(-1)^{N}\binom{\alpha }{N}x^{N}. }$$
(3.24)

It is easy to see that

$$\displaystyle{ (1 - x)^{\alpha -1} = \frac{(1 - x)^{\alpha -1}} {1 - x} =\sum _{ N=0}^{\infty }\Bigg(\sum _{ k=0}^{N}(-1)^{k}\binom{\alpha }{k}\Bigg)x^{N}. }$$
(3.25)

On the other hand

$$\displaystyle{ (1 - x)^{\alpha -1} =\sum _{ N=0}^{\infty }(-1)^{N}\binom{\alpha -1}{N}x^{N}, }$$
(3.26)

whence equating the coefficients of x N−1, we obtain

$$\displaystyle{ \begin{array}{rl} &\sum _{k=0}^{N-1}(-1)^{k}\binom{\alpha }{k} = (-1)^{N-1}\binom{\alpha -1}{N - 1} \\ & = \binom{N -\alpha -1}{N - 1} = \frac{\varGamma (N-\alpha )} {\varGamma (N)\varGamma (1-\alpha )}. \end{array} }$$
(3.27)

Thus

$$\displaystyle{ \begin{array}{rl} &\lim _{N\rightarrow \infty }N^{\alpha }\sum _{k=0}^{N-1}(-1)^{k}\binom{\alpha }{k} =\lim _{N\rightarrow \infty }\frac{N^{\alpha }\varGamma (N-\alpha )} {\varGamma (N)\varGamma (1-\alpha )} \\ & = \frac{1} {\varGamma (1-\alpha )}\lim _{N\rightarrow \infty }\frac{N^{\alpha }\varGamma (N-\alpha )} {\varGamma (N)} = \frac{1} {\varGamma (1-\alpha )}, \end{array} }$$
(3.28)

where we have used Stirling’s formula (or the known asymptotics for gamma function ratios) in the last step.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Szekeres, B.J. (2016). Turbulence Modeling Using Fractional Derivatives. In: Bátkai, A., Csomós, P., Faragó, I., Horányi, A., Szépszó, G. (eds) Mathematical Problems in Meteorological Modelling. Mathematics in Industry(), vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-40157-7_3

Download citation

Publish with us

Policies and ethics