Skip to main content

Heavy Metal Uptake and Tolerance Mechanisms of Serpentine Flora: Implications for Phytoremediation

  • Chapter
  • First Online:
Phytoremediation

Abstract

Serpentine soils derived from ultramafic rocks containing high contents of Ni, Cr, Mn, and Co. However, Ni is the most predominant and bioavailable heavy metal in serpentine soil. Due to high heavy metal content, high Mg, low nutrient contents (N, P, Ca), and low organic matter in this particular extreme environments give an inhospitable environment for plant growth. Therefore, these extreme conditions have led for the formation of serpentine specialized flora, which could thrive under these unfavorable conditions. Hence, serpentine sites are distributed throughout the world as patches leading to serpentine endemics. The genes of these specialized plants do not show an interchange, thereby forming a specialized genetic pool. However, some of the serpentine areas are utilized in agriculture and it has caused accumulation of toxic heavy metals in edible plant parts. Consumption of heavy metal-containing plants causes bioaccumulation in herbivores and humans. Moreover, these sites may cause groundwater contaminations again causing bioaccumulation in living organisms. The plants living in serpentine areas show exclusive mechanisms confined to them for both heavy metal uptake and storage. The rhizosphere acidification is one of the predominant factors for heavy metal uptake. ZIP family proteins are a group of transporter proteins, which are involved in membrane transport of Ni serpentine flora whereas via histidine, nicotianamine, and yellow strip L like family is important in Ni transport through the xylem. Moreover, cation diffusion factor and organic acids mediate vacuolar sequestration of Ni. Though numerous studies are carried on heavy metals such as Cd and As, no sufficient research is carried out on membrane Ni transporters. Hence, more research is necessary to manipulate Ni hyperaccumulators in biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farough A, Moore D, Lockner D, Lowell R (2016) Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: an experimental study. Geochem Geophys Geosyst. doi:10.1002/2015GC005973

    Google Scholar 

  2. Kruckeberg AR (1969) Soil diversity and the distribution of plants, with examples from western North America. Madroño 20:129–154

    Google Scholar 

  3. Robinson BH, Brooks RR, Kirkman JH, Gregg PE, Alvarez HV (1997) Edaphic influences on a New Zealand ultramafic (“serpentine”) flora: a statistical approach. Plant and Soil 188:11–20

    Article  CAS  Google Scholar 

  4. Cheng C-H, Jien S-H, Iizuka Y, Tsai H, Chang Y-H, Hseu Z-Y (2011) Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci Soc Am J 75:659–668

    Article  CAS  Google Scholar 

  5. Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry of serpentine soils. Int Geol Rev 46:97–126

    Article  Google Scholar 

  6. Garnier J, Quantin C, Guimarães EM, Vantelon D, Montargès-Pelletier E, Becquer T (2013) Cr (VI) genesis and dynamics in Ferralsols developed from ultramafic rocks: the case of Niquelândia, Brazil. Geoderma 193:256–264

    Article  Google Scholar 

  7. Hseu Z-Y, Iizuka Y (2013) Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma 202:126–133

    Article  Google Scholar 

  8. Sadegh MJM, Heidari A, Sarmadian F (2012) The role of pedogenic processes and soil characteristics on nickel distribution in some Oxiaquic Paleudalfs. Int Res J Appl Basic Sci 3(5):1032–1039

    Google Scholar 

  9. Vithanage M, Rajapaksha AU, Tang X, Thiele-Bruhn S, Kim KH, Lee S-E, Ok YS (2014) Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. J Environ Manage 141:95–103

    Article  CAS  PubMed  Google Scholar 

  10. Rajakaruna N, Bradfield GE, Bohm BA, Whitton J (2003) Adaptive differentiation in response to water stress by edaphic races of Lasthenia californica (Asteraceae). Int J Plant Sci 164:371–376

    Article  Google Scholar 

  11. Seneviratne M, Seneviratne G, Madawala H, Iqbal M, Rajakaruna N, Bandara T, Vithanage M (2015) A preliminary study of the role of bacterial–fungal co-inoculation on heavy metal phytotoxicity in serpentine soil. Aust J Bot 63:261–268

    Article  CAS  Google Scholar 

  12. Bayer RJ, Figura PJ (2015) Antennaria sawyeri (Asteraceae: Gnaphalieae), a new serpentine endemic species from the Klamath mountains of Northern California. Syst Bot 40:620–626

    Article  Google Scholar 

  13. Brady KU, Kruckeberg AR, Bradshaw H Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  14. Cox SF, Chelliah MC, McKinley JM, Palmer S, Ofterdinger U, Young ME, Cave MR, Wragg J (2013) The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying Palaeogene basalt lavas, Northern Ireland. Environ Geochem Health 35:553–567

    Article  CAS  PubMed  Google Scholar 

  15. Kanellopoulos C, Argyraki A, Mitropoulos P (2015) Geochemistry of serpentine agricultural soil and associated groundwater chemistry and vegetation in the area of Atalanti, Greece. J Geochem Explor 158:22–33

    Article  CAS  Google Scholar 

  16. Shchegolikhina A, Guadagnini L, Guadagnini A (2015) Genesis and transport of hexavalent chromium in the system ophiolitic rocks-groundwater, EGU General Assembly Conference Abstracts, p 754

    Google Scholar 

  17. Megremi I (2010) Distribution and bioavailability of Cr in central Euboea, Greece. Open Geosci 2:103–123

    Google Scholar 

  18. Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am J Sci 304:67–101

    Article  CAS  Google Scholar 

  19. Rajapaksha AU, Vithanage M, Oze C, Bandara W, Weerasooriya R (2012) Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma 189:1–9

    Article  Google Scholar 

  20. Reeves RD, Laidlaw WS, Doronila A, Baker AJ, Batianoff GN (2015) Erratic hyperaccumulation of nickel, with particular reference to the Queensland serpentine endemic Pimelea leptospermoides. Aust J Bot 63:119–127

    CAS  Google Scholar 

  21. Chathuranga P, Dharmasena S, Rajakaruna N, Iqbal M (2015) Growth and nickel uptake by serpentine and non-serpentine populations of Fimbristylis ovata (Cyperaceae) from Sri Lanka. Aust J Bot 63:128–133

    CAS  Google Scholar 

  22. Reeves R, Baker A, Bgrhidi A, Berazain R (1996) Nickel‐accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  CAS  Google Scholar 

  23. Reeves R, Baker A, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  24. Mizuno T, Kirihata Y (2015) Elemental composition of plants from the serpentine soil of Sugashima Island, Japan. Aust J Bot 63(4):252–260

    Article  CAS  Google Scholar 

  25. Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc Tosc Sci Natur 55:49–77

    CAS  Google Scholar 

  26. Freitas H, Prasad M, Pratas J (2004) Analysis of serpentinophytes from north–east of Portugal for trace metal accumulation––relevance to the management of mine environment. Chemosphere 54:1625–1642

    Article  CAS  PubMed  Google Scholar 

  27. Ghaderian S, Mohtadi A, Rahiminejad R, Reeves R, Baker A (2007) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant and Soil 293:91–97

    Article  CAS  Google Scholar 

  28. Harrison S, Rice K, Maron J (2001) Habitat patchiness promotes invasion by alien grasses on serpentine soil. Biol Conserv 100:45–53

    Article  Google Scholar 

  29. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491

    Article  Google Scholar 

  30. Brooks R, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  31. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  32. Marschner H (2011) Marschner's mineral nutrition of higher plants. Academic, Amsterdam

    Google Scholar 

  33. Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:517–534

    Article  Google Scholar 

  34. Adamczyk-Szabela D, Markiewicz J, Wolf WM (2015) Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water Air Soil Pollut 226:1–8

    Article  CAS  Google Scholar 

  35. Martínez-Alcalá I, Bernal MP, de la Fuente C, Gondar D, Clemente R (2016) Changes in the heavy metal solubility of two contaminated soils after heavy metals phytoextraction with Noccaea caerulescens. Ecol Eng 89:56–63

    Article  Google Scholar 

  36. Bernal M, McGrath S, Miller A, Baker A (1994) Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant and Soil 164:251–259

    Article  CAS  Google Scholar 

  37. Cieśliński G, Van Rees K, Szmigielska A, Krishnamurti G, Huang P (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil 203:109–117

    Article  Google Scholar 

  38. Hall J, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  39. McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  40. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  PubMed  Google Scholar 

  42. Assunção AG, Bleeker P, Wilma M, Vooijs R, Schat H (2008) Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant and Soil 303:289–299

    Article  Google Scholar 

  43. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  CAS  PubMed  Google Scholar 

  44. Poynton CY, Huang JW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088

    Article  CAS  PubMed  Google Scholar 

  45. Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  CAS  PubMed  Google Scholar 

  46. Vacchina V, Mari S, Czernic P, Marquès L, Pianelli K, Schaumlöffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740–2745

    Article  CAS  PubMed  Google Scholar 

  47. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    Article  CAS  PubMed  Google Scholar 

  48. Charnock J, JAC JBAS (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  49. Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  52. Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper‐accumulator Thlaspi caerulescens, encodes a nicotianamine‐Ni/Fe transporter. Plant J 49:1–15

    Article  CAS  PubMed  Google Scholar 

  53. Bidwell S, Crawford S, Woodrow I, Sommer‐Knudsen J, Marshall A (2004) Sub‐cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    Article  CAS  Google Scholar 

  54. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EA (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Küpper H, Lombi E, Zhao F-J, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  56. Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi. Proc Natl Acad Sci U S A 98:9995–10000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  58. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Selby JP (2014) The genetic basis of local adaptation to serpentine soils in Mimulus guttatus. Duke University, Durham

    Google Scholar 

  60. Ghasemi R, Chavoshi ZZ, Boyd RS, Rajakaruna N (2015) Calcium: magnesium ratio affects environmental stress sensitivity in the serpentine-endemic Alyssum inflatum (Brassicaceae). Aust J Bot 63:39–46

    CAS  Google Scholar 

  61. Proctor J (1971) The plant ecology of serpentine: III. The influence of a high magnesium/calcium ratio and high nickel and chromium levels in some British and Swedish serpentine soils. J Ecol 59:827–842

    Article  Google Scholar 

  62. Jarvis M, Briggs S, Knox J (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989

    Article  Google Scholar 

  63. O’Dell RE, James JJ, Richards JH (2006) Congeneric serpentine and nonserpentine shrubs differ more in leaf Ca: Mg than in tolerance of low N, low P, or heavy metals. Plant and Soil 280:49–64

    Article  Google Scholar 

  64. Robinson B, Chiarucci A, Brooks R, Petit D, Kirkman J, Gregg P, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  65. Singer AC, Bell T, Heywood CA, Smith J, Thompson IP (2007) Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environ Pollut 147:74–82

    Article  CAS  PubMed  Google Scholar 

  66. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil 203:47–56

    Article  CAS  Google Scholar 

  67. Robinson B, Brooks R, Howes A, Kirkman J, Gregg P (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  68. Anderson C, Brooks R, Chiarucci A, LaCoste C, Leblanc M, Robinson B, Simcock R, Stewart R (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  CAS  Google Scholar 

  69. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A 95:7220–7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Costa G, Morel J (1994) Efficiency of H+‐atpase activity on cadmium uptake by four cultivars of lettuce. J Plant Nutr 17:627–637

    Article  CAS  Google Scholar 

  71. Lindberg S, Wingstrand G (1985) Mechanism for Cd2+ inhibition of (K++ Mg2+) ATPase activity and K+ (86Rb+) uptake join roots of sugar beet (Beta vulgaris). Physiol Plant 63:181–186

    Article  CAS  Google Scholar 

  72. Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    Article  CAS  PubMed  Google Scholar 

  73. Costa G, Morel J (1993) Cadmium uptake by Lupinus albus (L.): cadmium excretion, a possible mechanism of cadmium tolerance. J Plant Nutr 16:1921–1929

    Article  CAS  Google Scholar 

  74. Astolfi S, Zuchi S, Passera C (2005) Effect of cadmium on H+ ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci 169:361–368

    Article  CAS  Google Scholar 

  75. Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  Google Scholar 

  76. Ros R, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    Article  CAS  Google Scholar 

  77. Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    Article  CAS  PubMed  Google Scholar 

  79. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  Google Scholar 

  82. Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801

    Article  CAS  PubMed  Google Scholar 

  83. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–251

    Article  CAS  PubMed  Google Scholar 

  84. Zhao F, Jiang R, Dunham S, McGrath S (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

  85. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  86. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    Article  CAS  PubMed  Google Scholar 

  87. Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seneviratne, M., Madawala, S., Vithanage, M. (2016). Heavy Metal Uptake and Tolerance Mechanisms of Serpentine Flora: Implications for Phytoremediation. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_15

Download citation

Publish with us

Policies and ethics