Skip to main content

Effect of Process Conditions on Fluidization

  • Chapter
  • First Online:
Fluidized-Bed Reactors: Processes and Operating Conditions

Part of the book series: Particle Technology Series ((POTS,volume 26))

Abstract

Previous chapters have illustrated the variety of fluidized-bed industrial applications and the importance of the process conditions on their operation. This chapter reviews experimental and theoretical studies on the influence of process conditions (temperature, pressure, presence of liquid, fines and fines size distribution) on the fluidization quality of gas-solid fluidized-bed reactors. The chapter begins with an overview of the effect of process conditions on fluidization highlighting the role of the hydrodynamic and interparticle forces on fluidized-bed behaviour. A brief review of the interparticle forces is reported to explain the foundation for the understanding of the factors responsible for the changes in fluidization at process conditions. Hence, the chapter discusses specifically the effect of temperature, pressure and other special conditions in the fluid bed, at minimum fluidization conditions, in the expanded fluid bed and at minimum bubbling conditions, showing how correlations and models established at ambient temperature and pressure may lead to misleading predictions at super- ambient conditions.

We dedicate this chapter to the late Dr. David Newton (formerly Head of the Fluidization Group at BP Chemicals Sunbury), a close colleague and friend, who contributed significantly to the work described herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen A, Geldart D (1980) Behaviour of gas-fluidized beds of fine powders part II. Voidage of the dense phase in bubbling beds. Powder Technol 26:47–55

    Article  Google Scholar 

  • Andeen BR, Glicksman LR (1976) Heat transfer to horizontal tube in shallow fluidized beds. Nat Heat Transfer Conf, St Louis MO, Paper 76-HT-67

    Google Scholar 

  • Avidan AA, Yerushalmi J (1982) Bed expansion in high velocity fluidization. Powder Technol 32:223–232

    Article  Google Scholar 

  • Baerns M (1966) Effect of interparticle adhesive forces on fluidization of fine particles. Ind Eng Chem Fund 5(4):508–516

    Article  Google Scholar 

  • Boland D, Geldart D (1971) Electrostatic Charging in gas fluidized beds. Powder Technol 5:289–297

    Article  Google Scholar 

  • Borodulya VA, Epanov YG, Teplitskii YS (1982) Fluidized bed heat transfer. J Eng Phys 42:528

    Google Scholar 

  • Borodulya VA, Teplitsky YS, Sorokin AP, Markevitch IL, Hassan AF, Yeromenko TP (1991) Heat transfer between a surface and a fluidized bed: considerations of temperature and pressure effects. Int J Heat Mass Transfer 34:47–53

    Article  Google Scholar 

  • Botterill JSM, Denloye AOO (1978) Ber-to-surface heat transfer in fluidized beds of large particles. Powder Tech 19:197–203

    Article  Google Scholar 

  • Botterill JSM, Desai M (1972) Limiting factors in gas-fluidized bed heat transfer. Powder Tech 6:231–238

    Article  Google Scholar 

  • Botterill JSM, Teoman Y, Yüregir KR (1982) The effect of operating temperature on the velocity of minimum fluidization, bed voidage and general behaviour. Powder Technol 31:101–110

    Article  Google Scholar 

  • Broadhurst TE, Becker HA (1975) Onset of fluidization and slugging in beds of uniform particles. AIChE J 21:238–247

    Google Scholar 

  • Bruni G, Lettieri P, Newton D, Yates JG (2006) The influence of fines size distribution on the behaviour of gas fluidized beds at high temperature. Powder Technol 163:88–97

    Article  Google Scholar 

  • Canada GS, MacLaughlin MH (1978) Large-particle fluidization and heat transfer at high pressure. AIChE Symp Ser 74(176):27–37

    Google Scholar 

  • Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150

    Google Scholar 

  • Castellanos A (2005) The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv Phys 54:263–376

    Article  ADS  Google Scholar 

  • Chan IH, Knowlton TM (1984) The effect of pressure on entrainment from bubbling gas-fluidized beds. In: Kunii D, Toei R (eds) Fluidization. Engineering Foundation, New York, pp 283–290

    Google Scholar 

  • Chen JC (2003) Heat transfer. In: Yang W-C (ed) Handbook of fluidization and fluid-particle systems (Chapter 3). Marcel Dekker, New York

    Google Scholar 

  • Chen ZD, Chen XP, Wu Y, Chen RC (2010) Study on minimum fluidization velocity at elevated temperature. Proc Chin Soc Electr Eng 30:21–25

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1974) Stability of bubbling fluidized beds. I E C Fundam 13:45–51

    Article  Google Scholar 

  • Compo P, Pfeffer R, Tardos GI (1987) Minimum sintering temperature and defluidization characteristics of fluidizable materials. Powder Technol 51:85–101

    Article  Google Scholar 

  • D’Amore M, Donsi’ G, Massimilla L (1979) The influence of bed moisture on fluidization characteristics of fine powders. Powder Technol 23:253–259

    Google Scholar 

  • Davidson JF, Harrison D (1963) Fluidized particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Doichev K, Akhmakov N (1979) Fluidisation of polydisperse systems. Chem Eng Sci 2–4

    Google Scholar 

  • Donsì G, Massimilla L (1973). Bubble-free expansion of gas-fluidized beds of fine particles. AIChE J 19:1104–1110

    Google Scholar 

  • Ennis BJ, Tardos G, Pfeffer R (1991) A microlevel-based characterisation of granulation phenomena. Powder Technol 65:257–272

    Google Scholar 

  • Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48(2):89–94

    Google Scholar 

  • Fairbrother R (1999) A microscopic investigation of particle-particle interactions in the presence of liquid binders in relation to the mechanisms of “wet” agglomeration processes. PhD Dissertation, Department of Chemical Engineering, University College London

    Google Scholar 

  • Formisani B, Girimonte R, Mancuso L (1998) Analysis of the fluidization process of particle beds at high temperature. Chem Eng Sci 53:951–961

    Google Scholar 

  • Foscolo PU, Gibilaro LG (1984) A fully predictive criterion for the transition between particulate and aggregate fluidization. Chem Eng Sci 39(12):1667–1675

    Article  Google Scholar 

  • Foscolo PU, Gibilaro L (1987) Fluid dynamic stability of fluidised suspensions: the particle bed model. Chem Eng Sci 42(6):1489–1500

    Article  Google Scholar 

  • Geldart D, Wong ACY (1984) Fluidization of powders showing degrees of cohesiveness-I. Bed expansion. Chem Eng Sci 39(10):1481–1488

    Article  Google Scholar 

  • Geldart D, Wong ACY (1985) Fluidization of powders showing degrees of cohesiveness-II. Experiments on rates of de-aeration. Chem Eng Sci 40(4):653–661

    Article  Google Scholar 

  • Girimonte R, Formisani B (2009) The minimum bubbling velocity of fluidized beds operating at high temperature. Powder Technol 189:74–81

    Article  Google Scholar 

  • Girimonte R, Formisani B (2014) Effects of operating temperature on the bubble phase properties in fluidized beds of FCC particles. Powder Technol 262:14–21

    Article  Google Scholar 

  • Godard KMS, Richardson JF (1968) The behaviour of bubble-free fluidised beds. Inst Chem Eng Symp Ser 30:126–135

    Google Scholar 

  • Goo JH, Seo MW, Kim SD, Song BH (2010) Effects of temperature and particle size on minimum fluidization and transport velocities in a dual fluidized bed. In: Proceedings of the 20th international conference on fluidized bed combustion. pp 305–310

    Google Scholar 

  • Goroshko VD, Rozembaum RB, Toedes OH (1958) Approximate relationships for suspended beds and hindered fall. Izv Vuzov Neft Gaz 1:125

    Google Scholar 

  • Grace JR (1986) Contacting modes and behaviour classification of gas-solid and other two-phase suspensions. Can J Chem Eng 64:353–363

    Article  Google Scholar 

  • Grace JR, Bi H (2003) Circulating fluidized beds. In: Yang W-C (ed) Handbook of fluidization and fluid-particle systems (Chapter 19). Marcel Dekker, New York

    Google Scholar 

  • Grace JR, Lim CJ (1987) Permanent jet formation in beds of particulate solids. Can J Chem Eng 65(1):160–162

    Article  Google Scholar 

  • Grace JR, Sun G (1991) Influence of particle size distribution on the performance of fluidized bed reactors. Can J Chem Eng 69(5):1126–1134

    Article  Google Scholar 

  • Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Tech 58:63–70

    Article  Google Scholar 

  • Hamaker HC (1937) The London-Van der Waals attraction between spherical particles. Physica IV 10:1059–1068

    Google Scholar 

  • Hartman M, Trnka O, Pohořelý M (2007) Minimum and terminal velocities in fluidization of particulate ceramsite at ambient and elevated temperature. Ind Eng Chem Res 46:7260–7266

    Article  Google Scholar 

  • Hirsan I, Shistla C, Knowlton TM (1980) The effect of bed and jet parameters on vertical jet penetration length in gas-fluidized beds. In: 73rd annual AIChE meeting, Chicago, Illinois

    Google Scholar 

  • Hoffmann AC, Yates JG (1986) Experimental observations of fluidized beds at elevated pressures. Chem Eng Commun 41:133

    Article  Google Scholar 

  • Israelachvili J (1991) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Jiliang M, Xiaoping C, Daoyin L (2013) Minimum fluidization velocity of particles with wide size distribution at high temperatures. Powder Technol 235:271–278

    Article  Google Scholar 

  • Karri SBR, Knowlton TM (1997) The effect of pressure on CFB riser hydrodynamics. In: Kwauk M, Li J (Eds) Circulating fluidized bed technology. Beijing Science Press, Beijing, pp 103–109

    Google Scholar 

  • King DF, Harrison D (1980) The bubble phase in high-pressure fluidized beds. Grace JR, Matsen JM (eds) Fluidization. Plenum Press, New York, pp 101–107

    Google Scholar 

  • King DH, Harrison D (1982) The dense phase of a fluidized bed at elevated pressures. Trans Inst Chem Eng 60:26–30

    Google Scholar 

  • Knowlton TM (1992) Pressure and temperature effects in fluid-particle systems. Fluidization VII. Engineering Foundation, New York, pp 27–46

    Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization engineering. Butterworths, Boston

    Google Scholar 

  • Landi G, Barletta D, Poletto M (2011) Modelling and experiments on the effect of air humidity on the flow properties of glass powders. Powder Technol 207:437–443

    Article  Google Scholar 

  • Landi G, Barletta D, Lettieri P, Poletto M (2012) Flow properties of moisturized powders in a Couette fluidized bed rheometer. Int J Chem Reactor Eng 10(A28):1–13

    Google Scholar 

  • Lettieri P (1999) A study on the influence of temperature on the flow behaviour of solid materials in a gas fluidized bed. PhD thesis, University College, London

    Google Scholar 

  • Lettieri P, Yates JG, Newton D (2000) The influence of interparticle forces on the fluidization behaviour of some industrial materials at high temperature. Powder Technol 110:117–127

    Article  Google Scholar 

  • Lettieri P, Newton D, Yates JG (2001a) High temperature effects on the dense phase properties of gas fluidized beds. Powder Technol 120:34–40

    Article  Google Scholar 

  • Lettieri P, Brandani S, Newton D, Yates JG (2001b) A generalization of the Foscolo and Gibilaro particle-bed model particle to predict the fluid stability of some fresh FCC catalysts at elevated temperatures. Chem Eng Sci 56(18):5401–5412

    Article  Google Scholar 

  • Leva M (1959) Fluidization. McGraw-Hill, New York

    Google Scholar 

  • Leva M, Weintraub M, Grummer M (1949) Heat transmission through fluidized beds of fine particles. Chem Eng Prog 45:563–572

    Google Scholar 

  • Leva M, Shirai T, Wen CY (1956) Prediction of onset of fluidization in beds of granular solids. Genie Chim 75:33

    Google Scholar 

  • Lin C-L, Wey M-Y, You S-D (2002) The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technol 126:297–301

    Article  Google Scholar 

  • Lucas A, Arnaldos J, Casal J, Puigjaner L (1986) High temperature incipient fluidization in mono and polydisperse systems. Chem Eng Commun 41:121–132

    Article  Google Scholar 

  • Massimilla L, Donsi’ G (1976) Cohesive forces between particles of fluid-bed catalysts. Powder Technol 15(2):253–260

    Article  Google Scholar 

  • Massimilla L, Donsi’ G, Zucchini C (1972) The structure of bubble-free gas fluidized beds of fine fluid cracking catalyst particles. Chem Eng Sci 27:2005–2015

    Article  Google Scholar 

  • Mickley HS, Fairbanks DF (1955) Mechanism of heat transfer to fluidized beds. AIChE J 1:374–384

    Article  Google Scholar 

  • Miller C, Logwinuk A (1951) Fluidization studies of solid particles. Ind Eng Chem 43:1220–1226

    Google Scholar 

  • Molerus O, Burschka A, Dietz S (1995) Particle migration at solid surfaces and heat transfer in bubbling fluidized beds II. Prediction of heat transfer in bubbling fluidized beds. Chem Eng Sci 50:879–885

    Article  Google Scholar 

  • Mutsers SMP, Rietema K (1977) The effect of interparticle forces on the expansion of a homogeneous gas-fluidized bed. Powder Technol 18:239–248

    Article  Google Scholar 

  • Newton D, Smith G, Hird N (1996) Assessment of FCC catalysts evaluation criteria. In: Presented at the fourth international conference on fluid particle interaction, Davos, Switzerland

    Google Scholar 

  • Olowson PA, Almstedt AE (1990) Influence of pressure and fluidization velocity on the bubble behaviour and gas-flow distribution in a fluidized bed. Chem Eng Sci 45:1733–1741

    Article  Google Scholar 

  • Olowson PA, Almstedt AE (1991) Influence of pressure on the minimum fluidization velocity. Chem Eng Sci 46:637–640

    Article  Google Scholar 

  • Olsson SE, Almstedt AE (1995) Local instantaneous and time-averaged het transfer in a pressurized fluidized bed with horizontal tubes: influence of pressure, fluidization velocity and tube-bank geometry. Chem Eng Sci 50:3231–3245

    Article  Google Scholar 

  • Ozkaynak TF, Chen JC, Frankenfield TR (1983) An experimental investigation of radiant heat transfer in high-temperature fluidized bed. In: Fluidization. Engineering Foundation, New York, Vol V, pp 371–378

    Google Scholar 

  • Raso G, D’Amore M, Formisani B, Lignola PG (1992) The influence of temperature on the properties of the particulate phase at incipient fluidization. Powder Technol 72:71–76

    Article  Google Scholar 

  • Riba JP, Routie R, Couderc JP (1978) Conditions minimales de miseenfluidisation par unliquide. Can J Chem Eng 56:26–30

    Article  Google Scholar 

  • Richardson J, Zaki WN (1954) Sedimentation and fluidisation: Part I. Trans Inst Chem Eng 32:35–53

    Google Scholar 

  • Rietema K, Piepers HW (1990) Effect of interparticle forces on the stability of gas-fluidized beds- I. Experimental evidence. Chem Eng Sci 45(6):1627–1639

    Article  Google Scholar 

  • Rietema K, Cottaar EJE, Piepers HW (1993) Effect of interparticle forces on the stability of gas-fluidized beds—II. Theoretical derivation of bed elasticity on the basis of van der Waals forces between powder particles. Chem Eng Sci 48(9):1687–1697

    Article  Google Scholar 

  • Rowe PN (1984) The effect of pressure on minimum fluidization velocity. Chem Eng Sci 39:173–174

    Article  Google Scholar 

  • Rowe PN, Santoro L, Yates JG (1978) The division of gas between bubble and interstitial phases in fluidized beds of fine powders. Chem Eng Sci 33:133–140

    Article  Google Scholar 

  • Seville JPK, Clift R (1984) The effect of thin liquid layers on fluidization characteristics. Powder Technol 37:117–129

    Article  Google Scholar 

  • Seville JPK, Silomon-Pflug H, Knight PC (1998) Modelling of sintering in high temperature gas fluidization. Powder Technol 97(2):160–169

    Google Scholar 

  • Siegell JH (1984) High-temperature defluidization. Powder Technol 38:13–22

    Article  Google Scholar 

  • Siegell JH (1989) Early studies of magnetized fluidized beds. Powder Technol 57:213–220

    Article  Google Scholar 

  • Simons SJR, Seville JPK, Adams MJ (1993) Mechanisms of agglomeration. In: Sixth international symposium on agglomeration, Nagoya, Japan

    Google Scholar 

  • Staub FW, Canada GS (1987) Effect of tube bank and gas density on flow behaviour and heat transfer in a fluidized bed. In: Davidson JF, Kearns DL (eds) Fluidization. Cambridge University Press, Cambridge, pp 339–344

    Google Scholar 

  • Subramani HJ, MothivelBalaiyya MB, Miranda LR (2007) Minimum fluidization velocity at elevated temperatures for Geldart’s group-B powders. Exp Therm Fluid Sci 32:166–173

    Article  Google Scholar 

  • Tardos G, Mazzone D, Pfeffer R (1985) Destabilization of fluidized beds due to agglomeration, Part I: Theoretical model. Can J Chem Eng 63:377–383

    Article  Google Scholar 

  • Valverde JM, Castellanos A (2008) Bubbling suppression in fluidized beds of fine and ultrafine powders. Part Sci Technol 26:197–213

    Article  Google Scholar 

  • Valverde JM, Quintanilla M, Castellanos A, Mills P (2001) The settling of fine cohesive powders. Europhys Lett 54:329–334

    Article  ADS  Google Scholar 

  • Valverde JM, Castellanos A, Mills P, Quintanilla M (2003) Effect of particle size and interparticle force on the fluidization behavior of gas-fluidized beds. Phys Rev E Stat Nonlin Soft Matter Phys 67:051305

    Google Scholar 

  • Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Progr Symp Ser 62:100–111

    Google Scholar 

  • Wender L, Cooper GT (1958) Heat transfer between fluidized-solids bed and boundary surfaces—correlation of data. AIChE J 4:15–23

    Article  Google Scholar 

  • Werdermann CC, Werther J (1993) Solids flow pattern and heat transfer in an industrial-scale fluidized-bed heat exchanger. In: Proceedings of 12th international conference on fluid-bed combustion, vol 2, pp 985–990

    Google Scholar 

  • Wirth KE, Gruber U (1997) Fluid mechanics of circulating fluidized beds with small-density ratio of solids to fluid. In: Kwauk M, Li J (eds) Circulating fluidized-bed technology. Beijing Science Press, Beijing, pp 78–83

    Google Scholar 

  • Wu S, Baeyens J (1991) Effect of operating temperature on minimum fluidization velocity. Powder Technol 67:217–220

    Article  Google Scholar 

  • Xavier AM, King DF, Davidson JF, Harrison D (1980) Surface-bed heat transfer in a fluidized bed at high pressure. In: Grace JR, Matsen JM (eds) Fluidization. Plenum, New York, pp 209–216

    Google Scholar 

  • Xie HY, Geldart D (1995) Fluidization of FCC powders in the bubble-free regime: effect of types of gases and temperature. Powder Technol 82:269–277

    Article  Google Scholar 

  • Yamazaki R, Han NS, Sun ZF, Jimbo G (1995) Effect of chemisorbed water on bed voidage of high temperature fluidized bed. Powder Technol 84:15–22

    Article  Google Scholar 

  • Yang W-C (1981) Jet penetration in a pressurized fluidized bed. I E C Fundam 20:297–300

    Article  Google Scholar 

  • Yates JG (1996) Effects of temperature and pressure on gas fluidization. Chem Eng Sci 51:167–205

    Article  Google Scholar 

  • Yates JG (2003) Effect of temperature and pressure. In: Yang W-C (ed) Handbook of fluidization and fluid-particle systems (Chapter 5). Marcel Dekker, New York

    Google Scholar 

  • Yates JG, Bejcek V, Cheesman DJ (1986) Jet penetration into fluidized beds at elevated pressures. In: Ostergaard K, Sorensen S (eds) Fluidization V. Engineering Foundation, New York, pp 79–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Yates .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yates, J.G., Lettieri, P. (2016). Effect of Process Conditions on Fluidization. In: Fluidized-Bed Reactors: Processes and Operating Conditions. Particle Technology Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-39593-7_5

Download citation

Publish with us

Policies and ethics