Skip to main content

Bariatric Surgery

  • Chapter
  • First Online:
Obesity

Abstract

Certain eligible patients with obesity who, because of genetic resettingTM and other reasons, have had little or no success losing significant amounts of weight with traditional management techniques may eventually need to consider the option of undergoing bariatric surgery. Metabolic and bariatric surgery (MBS) reverses the pathophysiological effects of obesity and results in significant, sustained weight loss and improvement or remission of every disease associated with obesity. Outcomes depend upon the specific surgical procedure or device utilized and patient factors. Every aspect of bariatric surgery is covered in this chapter, including the indications and contraindications for surgery, the preoperative physical, social and psychological assessments of the patient that should be done prior to surgery, the procedures for obtaining informed consent, and the potential complications of surgery, including the primary 30 day complications for each surgical procedure. This chapter also includes a complete description of the mechanism of action of MBS. It also contains a detailed description of the major surgical procedures approved for use in the United States and the major surgical “devices” approved by the FDA for use in obesity treatment, including the (Laparoscopic (or open) Roux-en Y Gastric Bypass (LRYGB), the Laparoscopic Sleeve Gastrectomy (LSG), the Duodenal Switch/Biliopancreatic Diversion (DS/BPD), the Laparoscopic Adjustable Gastric Band (LAGB), the Gastric Balloon (GB) and the Vagal Blocking Device (VBLOC).  Finally, this chapter covers the data on outcomes of MBS on weight loss and obesity-related disease, and the subjects of post-surgical health maintenance and weight regain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EstebanVJ, Varela J, Nguyen NT. Laparoscopic sleeve gastrectomy leads the U.S. utilization of bariatric surgery at academic medical centers. Surg Obes Relat Dis. 2015. doi:10.1016/j.soard.2015.02.008.

    Google Scholar 

  2. Varela JE, Nguyen NT. Laparoscopic sleeve gastrectomy leads the U.S. utilization of bariatric surgery at academic medical centers. Surg Obes Relat Dis. 2015;11:987–90.

    Article  Google Scholar 

  3. Chousleb E, Rodriguez JA, O’Leary JP. History of the development of metabolic/bariatric surgery in the ASMBS textbook of bariatric surgery. New York: Springer Science+Business Media; 2015.

    Google Scholar 

  4. Blackstone RP. The history of the American society for metabolic and bariatric surgery in the ASMBS textbook of bariatric surgery. New York: Springer Science+Business Media; 2015.

    Google Scholar 

  5. Blackstone RP. Quality in bariatric surgery in the ASMBS textbook of bariatric surgery. In: Nguyen NT, Blackstone RP, Morton JM, Ponce J, Rosenthal RJ, editors. Bariatric surgery, vol. I. New York: Spring Science+Business Media; 2015.

    Google Scholar 

  6. Telem DA, Talamini M, Altieri M, Yang J, Zhang Q, Pryor AD. The effect of National hospital accreditation in bariatric surgery on perioperative outcomes and long-term mortality. Surg Obes Rel Dis. 2015;11:749–57.

    Article  Google Scholar 

  7. Gastrointestinal Surgery for Severe Obesity. In: Consensus statement NIH consensus development conference. vol. 9(1), 24–27 March 1991.

    Google Scholar 

  8. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. The evidence Report. No. 98-4083, September 1998 National Institutes of Health.

    Google Scholar 

  9. Poirier P, Cornier MA, Mazzone T, et al. Bariatric surgery and cardiovascular risk factors. Circ J Am Heart Assoc. 2011;123:1–19. Accessed March 2012 from http://circ.ahajournals.org/content/123/15/1683.full.pdf.

    Google Scholar 

  10. American Diabetes Association. Standards of medical care in diabetes. Diab Care 2011;32(S1). Accessed March 2012 from http://care.diabetesjournals.org/content/34/Supplement_1/S11.full.pdf.

  11. American Association of Clinical Endocrinologists, The Obesity Society, and the American Society for Metabolic & Bariatric Surgery. Bariatric surgery guidelines; 2008. Accessed March 2012 from http://aace.metapress.com/content/u1w5l4261135n725/fulltext.pdf.

  12. Dixon JB, Zimmet P, Alberti KG, Rubino F. International diabetes taskforce on epidemiology and prevention. bariatric surgery: an IDF statement for obese Type 2 diabetes. Diab Med. 2011;28(6):628–42.

    Article  CAS  Google Scholar 

  13. U.S. Internal Revenue Service. Internal revenue bulletin: rulings and decisions under the internal revenue code of 1986; 2002. Accessed March 2012 from http://www.irs.gov/pub/irs-irbs/irb02-16.pdf.

  14. Centers for Medicare & Medicaid Services. Medicare national coverage determinations manual; 2012. Accessed March 2012 from https://www.cms.gov/manuals/downloads/ncd103c1_Part2.pdf.

  15. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  16. Morton J. Does hospital accreditation impact bariatric surgery safety? Ann Surg. 2014;260(3):504–9.

    Article  PubMed  Google Scholar 

  17. Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014; 8(8). doi:10.1002/14651858.DC003641.pub4.

  18. Purnell JQ, Selzer F, Smith MD, Berk PD, Courcoulas AP, Inabnet WB, et al. Metabolic syndrome prevalence and associations in a bariatric surgery cohort from the longitudinal assessment of bariatric surgery-2 study. Metab Syndr Relat Disord. 2014;12(2):86–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pelascini E, Disse E, Pasquer A, Poncet G, Gouillat C, Robert M. Should we wait for metabolic complications before operating on obese patients? Gastric bypass outcomes in metabolically healthy obese individuals. Surg Obes Relat Dis. 2015; doi:10.1016/j.soard.2015.04.024.

    Google Scholar 

  20. Wendling P. Sleeve gastrectomy cut biochemical cardiac risk factors presented by T. Mokhtari at the American College of Surgeons Clinical Congress, October 6; 2015.

    Google Scholar 

  21. Dixon JB, Hur KY, Lee WJ, Kim JF, Chong K, Chen SC, et al. Gastric bypass in type 2 diabetes with BMI < 30: weight and weight loss have a major influence on outcomes. Diabet Med. 2013;30(4):e127–34.

    Article  CAS  PubMed  Google Scholar 

  22. Ahima RS, Spaer CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 2000;21(3):263–307.

    Article  CAS  PubMed  Google Scholar 

  23. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    Article  CAS  PubMed  Google Scholar 

  24. Stefater MA, Wilson-Perez HE, Chambers AP, Sandoval DA, Seeley RJ. Endocr Rev. 2012;33:595–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miras AD, LeRoux CS. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10:575–84.

    Article  PubMed  Google Scholar 

  26. Odstrcil EA, Martinez JG, Santa Ana CA, Xue B, Schneider RE, Steffer KJ, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–13.

    Article  CAS  PubMed  Google Scholar 

  27. Akkary E, Sidani S, Boonsiri J, Uy S, Dziura J, Duffy AJ, Bell RL. The paradox of the pouch: prompt emptying predicts improved weight loss after laparoscopic Roux-Y gastric bypass. Surg Endosc. 2009;23(4):790–4.

    Article  PubMed  Google Scholar 

  28. Diabetes Prevention Program Research Group. Reduction in the Incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  PubMed Central  Google Scholar 

  29. Look AHEAD Research Group, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(2):145–54.

    Google Scholar 

  30. Ricci C, Gaeta M, Rausa E, Maccitella Y, Bonavina L. Early impact of bariatric surgery on type II diabetes, hypertension, and hyperlipidemia: a systematic review, meta-analysis and meta-regression on 6,587 patients. Obes Surg. 2014;24(4):522–8.

    Article  PubMed  Google Scholar 

  31. Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial-a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    Article  CAS  PubMed  Google Scholar 

  32. Ammerpohl O, Pratschke J, Schalmayer C, Haake A, Faber W, Von Kampen O, et al. Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma. Int J Cancer. 2012;130:1319–28.

    Article  CAS  PubMed  Google Scholar 

  33. Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.

    Article  CAS  PubMed  Google Scholar 

  34. Drozdowski LA, Clandinin MT, Thomason ABR. Morphological, kinetic, membrane biochemical and genetic aspects of intestinal enteroplasticity. World J Gastroenterol. 2009;15:774–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 2015;21:369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Groos S, Hunefeld G, Luciano L. Epithelial cell turnover-extracellular matrix relationship in the small intestine of human adults. Ital J Anat Enbryol. 2001;106:353–61.

    CAS  Google Scholar 

  37. Shaw D, Gohil K, Basson MD. Intestinal mucosal atrophy and adaptation. World J Gastroenterol. 2012;18:6357–75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  39. Liou AP, Paziuk M, Luevano JM, Machineni S, Turnbaugh PJ, Kaplan LM. Sci Transl Med. 2013;5(78r):a41.

    Google Scholar 

  40. Le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252:50–6.

    Article  PubMed  Google Scholar 

  41. Bitar KN, Raghavan S, Azkhem E. Tissue engineering in the gut: developments in neuromuscualture. Gastroenterology. 2014;146:1614–24.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bueter M, Lowenstein C, Ashrafian H, Hillebrand J, Bloom SR, Olbers T, et al. Vagal sparing surgical technique but not stoma size affects body weight loss in rodent model of gastric bypass. Obes Surg. 2010; 20:616–22.

    Google Scholar 

  43. Hao Z, Townsend Rl, Mumphrey MB, Patterson LM, Ye J, Berthoud HR. Vagal innervation of intestine contributes to weight loss after Roux-en-Y gastric bypass surgery in rats. Obes Surg. 2014;24:2145–51.

    Google Scholar 

  44. Peterli R, Steinert RE, Woelnerhanssen B, Peteres T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trail. Obes Surg. 2012;22:740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nguyen NQ, Debreceni TL, Bambrick JE, Bellon M, Wishart J, Standfield S, et al. Rapid gastric and intestinal transit is a major determinant of changes in blood glucose, intestinal hormones, glucose absorption and postprandial symptoms after gastric bypass. Obesity (Silver Spring). 2014;22:2003–9.

    Google Scholar 

  46. Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, Beglinger C. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring). 2013;21(12):E660–8.

    Article  CAS  Google Scholar 

  47. Aron-Wisenewsky J, Clement K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep. 2014;16:454.

    Article  CAS  Google Scholar 

  48. Malin SK, Samat A, Wolski K, Abood B, Pothier CE, Bhatt DL, et al. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs. standard medical therapy. Int J Obes (Lond). 2014;38(3):364–70.

    Google Scholar 

  49. Li B, Lu Y, Srikant CB, Gao ZH, Liu J. Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal-jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointest Liver Physiol. 2013;304:G635–45.

    Article  CAS  PubMed  Google Scholar 

  50. Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003;26:507–13.

    Article  CAS  PubMed  Google Scholar 

  51. Pecina S, Berridge KC. Opioid site in nucleus accumbens shell mediates eating and hedonic “liking” for food: map based on microinjection Fos plumes. Brain Res. 2000;863:71–86.

    Article  CAS  PubMed  Google Scholar 

  52. Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ. Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos Trans R Soc Lond B Biol Sci. 2006;361:1137–48.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Finlayson G, Arlotti A, Dalton M, King N, Blundell JE. Implicit wanting and explicit liking are markers for trait binge eating. A susceptible phenotype for overeating. Appetite. 2011;57:722–8.

    Article  PubMed  Google Scholar 

  54. Berthoud HR, Zheng H, Shin AC. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann NY Acad Sci. 2012;1264:36–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lemmens SG, Rutters F, Born JM, Westerterp-Plantenga MS. Stress augments food “wanting” and energy intake in visceral overweight subjects in the absence of hunger. Physiol Behav. 2011;103:157–63.

    Article  CAS  PubMed  Google Scholar 

  56. Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, et al. Decreased dopamine type 2 receptors availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.

    Google Scholar 

  57. Faria SL, Faria OP, Buffington C, deAlmeida Cardeal M, Rodrigues de Gouvea H. Energy expenditure before and after Roux-en-Y gastric bypass. Obes Surg. 2012; 22(9). 1450–5.

    Google Scholar 

  58. Fiancbaum L, Choban PS, Bradley LR, Burge JC. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery. 1997;122(5):943–9.

    Article  Google Scholar 

  59. Werling M, Fandriks L, Olbers T, Bueter M, Sjostrom L, Lonroth H, et al. Roux-en-Y gastric bypass surgery increases respiratory quotient and energy expenditure during food intake. PLOS ONE. 2015; doi:10.1371/journal.pone.0129784.

    Google Scholar 

  60. Seeley RS, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Met 2015; doi:10.1016/j.cmet.2015.01.001.

    Google Scholar 

  61. Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, et al. DNA Methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.

    Article  CAS  PubMed  Google Scholar 

  62. Yousseif A, Emmanuel J, Karra E, Millet Q, Elkalaawy M, Jenkinson AD, et al. Differential effects of LSG and LGB on appetite, circulating acyl-ghrelin, peptide YY3-36 and active GLP-1 levels in non-diabetic humans. Obes Surg. 2014;24:241–52.

    Article  PubMed  Google Scholar 

  63. Werling M, Olbers T, Fandriks L, Bueter M, Lonroth H, Stenflo K, LeRoux CW. Increased postprandial energy expenditure may explain superior long term weight loss after Roux-en-Y gastric bypass compared to vertical banded gastroplasty. PLOS ONE. 2013;8(4):e60280.

    Google Scholar 

  64. Woelnerhanssen B, Peterli R, Steinert RE, Peters T, Borbely Y, Beglinger C. Effects of Post bariatric surgery weight loss on adipolines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy-a prospective randomized trial. Surg Obes Relat Dis. 2011;7:1561–8.

    Article  Google Scholar 

  65. The Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361:445–54.

    Article  Google Scholar 

  66. Sanni A, Perez S, Medbery R, Urrego HD, McCready C, Toro JP, Patel AD, Lin E. Postoperative complications in bariatric surgery using age and BMI stratification: a study using ACS-NSQIP data. Surg Endosc. 2014;28(12):3302–9.

    Article  PubMed  Google Scholar 

  67. Sweeney JF, Davis SS. Postoperative complications in bariatric surgery using age and BMI stratification: a study using ACS-NSQIP data. Surg Endosc. 2014;28(12):3302–9.

    Article  PubMed  Google Scholar 

  68. Patterson Wl, Peoples BD, Gesten FC. Predicting potentially preventable hospital readmissions following bariatric surgery. Surg Obes Relat Dis. 2015; 11:866–73.

    Google Scholar 

  69. Hutter MM, Schirmer BD, Jones DB, et al. Fist report form the American college of surgeons bariatric surgery center network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg 2011;2254(3):410–20 (discussion 420–2).

    Google Scholar 

  70. Nguyen NT, Goldman C, Rosenquist CJ, et al. Laparoscopic versus open gastric bypass: a randomized study of outcomes, quality of life, and costs. Ann Surg. 2001;234(3):279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Birkmeyer NJ, Finks JF, English WJ, Carlin AM, Hawasili AA, Genaw JA, et al. Risks and benefits of prophylactic inferior vena cava filters in patients undergoing bariatric surgery. J Hosp Med. 2013;8(4):173–7.

    Article  PubMed  Google Scholar 

  72. Christou NV, Jarand J, Sylvestre JL, McLean AP. Analysis of the incidence and risk factors for wound infections in open bariatric surgery. Obes Surg. 2004;14(1):16–22.

    Article  PubMed  Google Scholar 

  73. Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;2324:515–529.

    Google Scholar 

  74. Bal BS, Finelli FC, Shope TR, Koch TR. Nutritional deficiences after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56.

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez-Carmona Y, Lopez-Alavez FJ, Gonzalez-Garay AG, Solis-Galiia C, Melendez G, Serralde-Zuniga AE. Bone mineral density after bariatric surgery. A systematic review. Int J Surg. 2014;12(9):976–82.

    Article  PubMed  Google Scholar 

  76. Kalarchian MA, et al. Psychiatric disorder among bariatric surgery candidates: relationship to obesity and functional health systems. Am J Psychiatry. 2007;164:328–34.

    Article  PubMed  Google Scholar 

  77. Mitchell JE, et al. Psychopathology prior to surgery in the longitudinal assessment of bariatric surgery-3 (LABS-3) psychosocial study. Surg Obes Relat Dis. 2012;8(5):533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, et al. Weight change and health outcomes at 3 years after bariatric surgery. JAMA. 2013; doi:10.1001/jama.2013.280928.

  79. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  CAS  Google Scholar 

  80. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, Castagneto M, Bornstein S, Rubino F. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-center, randomized controlled trail. Lancet. 2015;386:964–73.

    Article  PubMed  Google Scholar 

  81. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Adnersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.

    Article  PubMed  CAS  Google Scholar 

  82. Muleer-Stich BP, Fischer L, Kenngott HG, Gondan M, Senft J, Clemens G, et al. Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization-results of a prospective cohort study (DiaSurg 1 study). Ann Surg. 2013;258(5):760–5.

    Article  Google Scholar 

  83. Still CD, Wood GC, Benotti P, Petrick AT, Gabrielsen J, Strodel W, Ibele An, Seiler J, Irving BA, Celaya M, Blackstone RP, Gerhard GS, Argyropoulos G. Preoperative prediction of type 2 diabetes remission after Roux-en Y gastric bypass surgery: a retrospective cohort study. Lancet Diab Endocrinol. 2014;2(1):38–45.

    Google Scholar 

  84. Buse JB, Caprio S, Cefalu WT, et al. How do we define cure of diabetes? Diabetes Care. 2009;32(11):2133–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cotillard A, Poitou C, Duchateaus-Nguyen G, et al. Type 2 diabetes remission after gastric bypass. What is the best prediction tool for clinicians? Obes Surg. 2015;25(7):128–1132.

    Article  Google Scholar 

  86. Adams TD, Davidson LE, Litwin SE, Kolotkin RI, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ashrafian H, Ahmed K, Rowland SP, Patel VM, Gooderham NG, Holmes E, et al. Metabolic surgery and cancer. Cancer. 2011;117(9):1788–99.

    Article  PubMed  Google Scholar 

  88. Ashrafian H, LeRoux CW, Darzi A, Athanasiou T. Effects of bariatric surgery on cardiovascular function. Circulation. 2008;118:2091–102.

    Article  PubMed  Google Scholar 

  89. Carlin AM, Zeni RM, English WJ, Awasli AA, Genaw JA, Kr Krause, et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass and adjustable gastric banding procedures for the treatment of morbid obesity. Ann Surg. 2013;257(5):791–7.

    Article  PubMed  Google Scholar 

  90. Peterli R, Borbely Y, Ker B, Gass M, Peters T, Thurnheer M, et al. Early results of the swiss multicenter bypass or sleeve study. A prospective randomized trial comparing laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Ann Surg. 2013;258(5):690–5.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Patti MG, Allaix ME, Fisichella M. Analysis of the causes of failed antireflux surgery and the principles of treatment a review. JAMA Surg. 2015;150(6):585–90.

    Article  PubMed  Google Scholar 

  92. Li P, Fu P, Chen J, Wang LH, Wang DR. Laparoscopic Roux-en-Y gastric bypass vs. laparoscopic sleeve gastrectomy for morbid obesity and diabetes mellitus: a meta-analysis of sixteen recent studies. Hepatogastroenterology. 2013;60(121):132–7.

    PubMed  Google Scholar 

  93. Pedersen JB, Laresen JF, Drewes Am, Arveschoug A, Kroustrup JP, Gregersen H. Weight loss after gastric banding is associated with pouch pressure and not pouch emptying rate. Obes Surg. 2009;19(7):850–5.

    Google Scholar 

  94. De Jong JR, van Ramshorst B, Gooszen HG, Smout AJ, Tiel-Van Buul MM. Weight loss after laparoscopic adjustable gastric banding is not caused by altered gastric emptying. Obes Surg. 2009:19(3):287–92.

    Google Scholar 

  95. LePage PA, Kwon S, Lord SJ, Lord RV. Esophageal dysmotility after laparoscopic adjustable gastric band surgery. Obes Surg. 2014;24(4):625–30.

    Article  Google Scholar 

  96. Anthone GJ, Lord RVN, DeMeester TR, Crookes PF. The duodenal switch operation for the treatment of morbid obesity. Ann Surg. 2003;238(4):618–28.

    PubMed  PubMed Central  Google Scholar 

  97. Biertho L, Simon-Hould F, Marceau S, Lebel S, Lescelleur O, Biron S. Current outcomes of laparoscopic duodenal switch. Ann Surg Innov Res. 2016;10(1): doi:10.1186/s13022-016-0024-7.

  98. Spaniolas K, Kasten KR, Sippey ME, Pender JR, Chapman WH, Pories WJ. Pulmonary embolism and gastrointestinal leak following bariatric surgery: when do major complications occur? Surg Obes Rel Dis. 2015. doi:10.1016/j.soard.2015.05.003.

    Google Scholar 

  99. Eldar SM, Heneghan HM, Brethauser SA, Khwaja HA, Singh M, Rogula T, et al. Laparoscopic bariatric surgery for those with body mass index of 70–125 kg/m2. Surg Obes Relat Dis. 2012;8(6):736–40.

    Article  PubMed  Google Scholar 

  100. Prachand VN, DaVee RT, Alverdy JC. Duodenal switch provides superior weight loss in the super-obese (BMI > 50 kg/m2) compared with gastric bypass. Ann Surg. 2006;244(4):611–9.

    PubMed  PubMed Central  Google Scholar 

  101. Topart P, Becouarn G, Ritz P. Weight loss is more sustained after biliopancreatic diversion with duodenal switch than Roux-en-Y gastric bypass in super obese patients. Surg Obes Relat Dis. 2013;9(4):526–30.

    Article  PubMed  Google Scholar 

  102. Risstad H, Sevik TT, Engstrom M, Aasheim ET, Fagerland MW, et al. Five-year outcomes after laparoscopic gastric bypass and laparoscopic duodenal switch in patients with body mass index of 50–60: a randomized clinical trial. JAMA Surg. 2015;150(4):352–61.

    Article  PubMed  Google Scholar 

  103. Ikramuddin S, Blackstone RP, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial. JAMA. 2014;312(9):915–22.

    Article  CAS  PubMed  Google Scholar 

  104. Ponce J, Woodman G, Swain J, Wilson E, English W, Ikramuddin S, et al. The REDUCE pivotal trial: a prospective, randomized controlled pivotal trail of a dual intragastric balloon for the treatment of obesity. Surg Obes Relat Dis. 2015;11:874–81.

    Article  PubMed  Google Scholar 

  105. Still CD, Wood GC, Chu X, Erdman R, Manney CH, Benotti PN, et al. High allelic burden of four obesity SNP’s is associated with poorer weight loss outcomes following gastric bypass surgery. Obesity. 2011. doi:10.1038/oby.2011.3.

    PubMed  Google Scholar 

  106. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273:219–34.

    Article  CAS  PubMed  Google Scholar 

  108. Rodrigues GK, Resende CM, Durso DF, Rodrigues LA, Silva JL, Reis RC, et al. A single FTO gene variant rs9939609 is associated with body weight evolution in a multiethnic extremely obese population that underwent bariatric surgery. Nutrition. 2015;31(11–12):1344–50.

    Article  CAS  PubMed  Google Scholar 

  109. Hatoum IJ, Stylopoulos N, Vanhoose AM, Boyd KL, Yin DP, Ellacott KL, et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab. 2012;97(6):E1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mirshahi UL, Still CK, Mirshahi T. The MC4R (I251L) Allele is associated with better metabolic status and more weight loss after gastric bypass surgery. J Clin Endocinol Metab. 2011;96(12):E2088–96.

    Article  CAS  Google Scholar 

  111. Elkhenini HF, New JP, Syed AA. Five-year outcome of bariatric surgery in a patient with Melanocortin-4 receptor mutation. Clin Obes. 2014;4(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  112. Pellitero S, Perez-Romero N, Martinez E, Granada ML, Moreno P, Balibrea JM, et al. Baseline circulating ghrelin does not predict weight regain neither maintenance of weight loss after gastric bypass at long term. Am J Surg. 2015;210(2):340–4.

    Article  PubMed  Google Scholar 

  113. Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomized controlled trials. BMJ. 2013;347:I5934.

    Article  Google Scholar 

  114. Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8. doi:10.1002/14651858.CD003641.pub4.

  115. Coupaye M, Castel B, Sami O, Tuyeras G, Mskia S, Ledoux S. Comparison of the incidence of cholelithiasis after sleeve gastrectomy and Roux-en-Y gastric bypass in obese patients: a prospective study. Surg Obes Relat Dis. 2015;11:779–84.

    Article  PubMed  Google Scholar 

  116. Tsirline VB, Keilani ZM, Djouzi EL, Phillips RC, Kuwada TS, Gersin K, Simms C, Stefanidis D. How frequently and when do patients undergo cholecystectomy after bariatric surgery? Surg Obes Relat Dis. 2014;10(2):313–21.

    Article  PubMed  Google Scholar 

  117. Worni M, Guller U, Shah A, Gandhi M, Shah J, Rajgor D, et al. Cholecystectomy concomitant with laparoscopic gastric bypass: a trend analysis of the nationwide inpatient sample from 2001 to 2008. Obes Surg. 2012;22(2):220–9.

    Article  PubMed  Google Scholar 

  118. Wudel LJ, Wright JK, Debelak JP, Allos TM, Shry Y, Chapman WC. Prevention of gallstone formation in morbidly obese patients undergoing rapid weight loss: results of a randomized controlled pilot study. J Surg Res. 2002;102(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  119. Adams LB, Chang C, Pope J, Kim Y, Liu P, Yates A. Randomized, prospective comparison of Ursodeoxycholic acid for the prevention of gallstones after sleeve gastrectomy. Obes Surg. 2015. doi:10.1007/s11695-015-1858-5.

    PubMed Central  Google Scholar 

  120. Blackstone RP, Cortes MC. Metabolic acuity score: effect of major complications after bariatric surgery. Surg Obes Rel Dis. 2010;8(2):274–81.

    Article  Google Scholar 

  121. Giusti V, De Lucia V, Calmer JM, Heralef E, Gaillard RC, Burckhardt P, Suter M. Impact of preoperative teaching on surgical option of patients qualifying for bariatric surgery obesity. Obes Surg. 2004;1(4):1241–6.

    Article  Google Scholar 

  122. Wee CC, Pratt JS, et al. Best practice updates for informed consent and patient education in weight loss surgery. Obesity. 2009;17(5):885–8.

    Article  PubMed  Google Scholar 

  123. Finks JF, Kole KL, Yenumula PR, English WJ, Krause KR, Carlin AM et al. Predicting risk for serious complications with bariatric surgery: results from the Michigan bariatric surgery collaborative. Ann Surg. 2011;254(4):633–40.

    Google Scholar 

  124. Ramanan B, Gupta PK, Gupta H, Fang X, Forse RA. Development and validation of a bariatric surgery mortality risk calculator. J Am Coll Surg. 2012;214(6):892–900.

    Article  PubMed  Google Scholar 

  125. Khanbhai M, Dubb S, Patel A, Ahmed A, Richards T. The prevalence of iron deficiency anaemia in patients undergoing bariatric surgery. Obes Res Clin Pract. 2015;9:45–9.

    Article  CAS  PubMed  Google Scholar 

  126. Bal BS, Finelli FC, Shope TR, Koch TR. Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol. 2012;8:544–56.

    Article  CAS  PubMed  Google Scholar 

  127. Gudzune KA, Huizinga MM, Chang H, Asamoah V, Gadgil M, Clark JM. Screening and diagnosis of micronutrient deficiencies before and after bariatric surgery. Obesity. 2013;23(10):1581–9.

    Google Scholar 

  128. Devereaux PJ, Sessler DI. Cardiac complications in patients undergoing major noncardiac surgery. N Engl J Med. 2015;373:2258–69.

    Article  CAS  PubMed  Google Scholar 

  129. Beattie WS, Abdelnaem E, Wijeysundera DN, Buckley DN. A meta-analyses comparison of preoperative stress echocardiography and nuclear scintigraphy imaging. Anesth Alalg. 2006;102:8–16.

    Article  Google Scholar 

  130. Devereaux PJ, Xavier D, Pogue J, Guyatt G, Sigamani A, Garutti I, et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: a cohort study. Ann Intern Med. 2011;154:523–8.

    Article  CAS  PubMed  Google Scholar 

  131. Rodseth RN, Biccard BM, Le Manach Y, Sessler DI, Lurati Buse GA, et al. The prognostic value of pre-operative and post-operative B-type natriuretic peptides in patients undergoing noncardiac surgery: B-type natriuretic peptide and N-terminal fragment of pro-B-type natriuretic peptide: a systematic review and individual patients data meta-analysis. J Am Coll Cardiol. 2014;63:170–80.

    Article  CAS  PubMed  Google Scholar 

  132. Weber M, Luchner A, Seeberger M, Mueller C, Liebetrau C, Schlitt A, et al. Incremental value of high-sensitive troponin T in addition to the revised cardiac index for peri-operative risk stratification in non-cardiac surgery. Eur Heart J. 2013;34:853–62.

    Article  CAS  PubMed  Google Scholar 

  133. Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA a guideline on peri-operative cardiovascular evaluation and management of patients undergoing non-cardiac surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;130:2246–64.

    Article  CAS  PubMed  Google Scholar 

  134. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 Years. N Engl J Med. 2007;357(4):370–9.

    Article  CAS  PubMed  Google Scholar 

  135. The Diagnostic and Statistical manual of Mental Disorders. DSM-5. 5th ed. American Psychiatric Association (APA); 2013.

    Google Scholar 

  136. Bhatti JA, et al. Self-harm emergencies after bariatric surgery a population-based cohort study. JAMA. 2015; doi:10.1001/Jamasurg.2015.3414.

    Google Scholar 

  137. Blackstone RP, et al. Psychological classification as a communication and management tool in obese patients undergoing bariatric surgery. Surg Obes Relat Dis. 2010;6:274–81.

    Article  PubMed  Google Scholar 

  138. Schlick A, Wagner SA, Muhlhaus B, et al. Agreement between clinical evaluation and structured clinical interviews (SCID for DSM-IV) in morbidly obese pre-bariatric surgery patients. Psychother Psychosom Med Psychol. 2010;60:469–73.

    Article  PubMed  Google Scholar 

  139. Spanjersberg WR, Reurings J, Keus F, van Laarhoven CJ. Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev. 2011; (2) DC007635.

    Google Scholar 

  140. Lemanu DP, Singh PP, Berridge K, Burr M, Birch C, Babor R, et al. Randomized clinical trial of enhanced recovery versus standard care after laparoscopic sleeve gastrectomy. Br J Surg. 2013;100(4):482–9.

    Article  CAS  PubMed  Google Scholar 

  141. Awad H, Carter S, Purkayastha S, Hakky S, Moorthy K, Cousins J, Ahmed AR. Enhanced recovery after bariatric surgery (ERABS): clinical outcomes from a tertiary referral bariatric centre. Obes Surg. 2014;24:753–8.

    Article  PubMed  Google Scholar 

  142. Edmiston CE, Lee CJ, Krepel CJ, Spencer M, Leaper D, Brown KR, et al. Evidence for a standardized preadmission showering regimen to achieve maximal antiseptic skin surface concentrations of chlorhexidine gluconate, 4 % in surgical patients. JAMA Surg. 2015;150(11):1027–33.

    Article  PubMed  Google Scholar 

  143. Bartlett MA, Mauck KF, Daniels PR. Prevention of venous thromboembolism in patients undergoing bariatric surgery. Vasc Health Risk Manage. 2015;11:461–77.

    Google Scholar 

  144. Quidley AM, Bland CM, Bookstaver PB, Kuper K. Perioperative management of bariatric surgery patients. Am J Health Syst Pharm. 2014;71(15):1253–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin P. Blackstone .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blackstone, R.P. (2016). Bariatric Surgery. In: Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-39409-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39409-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39407-7

  • Online ISBN: 978-3-319-39409-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics