Skip to main content

On the Design of Optimal Iterative Methods for Solving Nonlinear Equations

  • Chapter
  • First Online:

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 10))

Abstract

A survey on the existing techniques used to design optimal iterative schemes for solving nonlinear equations is presented. The attention is focused on such procedures that use some evaluations of the derivative of the nonlinear function. After introducing some elementary concepts, the methods are classified depending on the optimal order reached and also some general families of arbitrary order are presented. Later on, some techniques of complex dynamics are introduced, as this is a resource recently used for many authors in order to classify and compare iterative methods of the same order of convergence. Finally, some numerical test are made to show the performance of several mentioned procedures and some conclusions are stated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A: Math. Scientia 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Amat, S., Busquier, S., Plaza, S.: A construction of attracting periodic orbits for some classical third-order iterative methods. J. Comput. Appl. Math. 189, 22–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366, 24–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Artidiello, S.: Diseño, implementación y convergencia de métodos iterativos para resolver ecuaciones y sistemas no lineales utilizando funciones peso. Ph.D. thesis, Universitat Politècnica de València (2014)

    Google Scholar 

  6. Artidiello, S., Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Optimal high-order methods for solving nonlinear equations. J. Appl. Math. 2014, 9 pp. (2014). ID 591638

    Google Scholar 

  7. Artidiello, S., Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Two weighted eight-order classes of iterative root-finding methods. Int. J. Comput. Math. 92 (9), 1790–1805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Babajee, D.K.R., Thukral, R.: On a 4-Point sixteenth-order king family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, 13 pp. (2012). ID 979245

    Google Scholar 

  9. Babajee, D.K.R., Cordero, A., Torregrosa, J.R.: Study of iterative methods through the Cayley Quadratic Test. J. Comput. Appl. Math. 291, 358–369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beardon, A.F.: Iteration of Rational Functions. Graduate Texts in Mathematics. Springer, New York (1991)

    Book  MATH  Google Scholar 

  11. Behl, R.: Development and analysis of some new iterative methods for numerical solutions of nonlinear equations. Ph.D. thesis, Punjab University (2013)

    Google Scholar 

  12. Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225, 105–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11 (1), 85–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cayley, A.: Applications of the Newton-Fourier Method to an imaginary root of an equation. Q. J. Pure Appl. Math. 16, 179–185 (1879)

    MATH  Google Scholar 

  16. Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 11 pp. (2013). Article ID 780153. http://dx.doi.org/10.1155/2013/780153

  18. Chun, C.: Some fourth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 195, 454–459 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chun, C., Ham, Y.: A one-parametric fourth-order family of iterative methods for nonlinear equations. Appl. Math. Comput. 189, 610–614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chun, C., Ham, Y.: Some second-derivative-free variants of super Halley method with fourth-order convergence. Appl. Math. Comput. 195, 537–541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chun, C., Lee, M.Y., Neta, B., Džunić, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth orders of convergence. J. Comput. Appl. Math. 234 (10), 2969–2976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s methods with optimal eighth order of convergence. Appl. Math. Lett. 24, 2082–2086 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Three-step iterative methods with optimal eighth-order convergence. J. Comput. Appl. Math. 235, 3189–3194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cordero, A., Soleymani, F., Torregrosa, J.R., Shateyi, S.: Basins of attraction for various Steffensen-type methods. J. Appl. Math. 2014, 17 pp. (2014). Article ID 539707. http://dx.doi.org/10.1155/2014/539707

  29. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: Two optimal general classes of iterative methods with eighth-order. Acta Appl. Math. 134 (1), 61–74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: A stable family with high order of convergence for solving nonlinear equations. Appl. Math. Comput. 254, 240–251 (2015)

    Article  MathSciNet  Google Scholar 

  31. Cordero, A., Magreñán, Á.A., Quemada, C., Torregrosa, J.R.: Stability study of eighth-order iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 291, 348–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Curry, J., Garnet, L., Sullivan, D.: On the iteration of a rational function: computer experiments with Newton’s method. Commun. Math. Phys. 91, 267–277 (1983)

    Article  MATH  Google Scholar 

  33. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City, CA (1989)

    MATH  Google Scholar 

  34. Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. 18, 287–343 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Džunić, J., Petković, M.: A family of three-point methods of Ostrowski’s type for solving nonlinear equations. J. Appl. Math. 9 pp. (2012). ID 425867. doi:10.1155/2012/425867

    Google Scholar 

  36. Džunić, J., Petković, M.S., Petković, L.D.: A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Appl. Math. Comput. 217, 7612–7619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fagella, N.: Invariants in dinàmica complexa. Butlletí de la Soc. Cat. de Matemàtiques 23 (1), 29–51 (2008)

    MathSciNet  Google Scholar 

  38. Fatou, P.: Sur les équations fonctionelles. Bull. Soc. Mat. Fr. 47, 161–271 (1919); 48, 33–94, 208–314 (1920)

    Google Scholar 

  39. Geum, Y.H., Kim, Y.I.: A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Appl. Math. Lett. 24, 929–935 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gutiérrez, J.M., Hernández, M.A., Romero, N.: Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233, 2688–2695 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gutiérrez, J.M., Plaza, S., Romero, N.: Dynamics of a fifth-order iterative method. Int. J. Comput. Math. 89 (6), 822–835 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hawkins, J.M.: McMullen’s root-finding algorithm for cubic polynomials. Proc. Am. Math. Soc. 130, 2583–2592 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)

    Article  MATH  Google Scholar 

  44. Julia, G.: Mémoire sur l’iteration des fonctions rationnelles. J. Mat. Pur. Appl. 8, 47–245 (1918)

    MATH  Google Scholar 

  45. Khattri, S.K., Argyros, I.K.: Sixteenth order iterative methods without restraint on derivatives. Appl. Math. Sci. 6 (130), 6477–6486 (2012)

    MathSciNet  Google Scholar 

  46. Kim, Y.I.: A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. Int. J. Comput. Math. 89, 1051–1059 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. King, R.F.: A family of fourth-order methods for solving nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kou, J., Li, Y., Wang, X.: A composite fourth-order iterative method for solving nonlinear equations. Appl. Math. Comput. 184, 471–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kou, J., Li, Y., Wang, X.: A family of fourth-order methods for solving nonlinear equations. Appl. Math. Comput. 188, 1031–1036 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kou, J., Li, Y., Wang, X.: Fourth-order iterative methods free from second derivative. Appl. Math. Comput. 184, 880–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215 (9), 3449–3454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Magreñán, Á.A.: Estudio de la dinámica del método de Newton amortiguado. Ph.D. thesis. Servicio de Publicaciones, Universidad de La Rioja (2013)

    Google Scholar 

  54. Maheshwari, A.K.: A fourth order iterative methods for solving nonlinear equations. Appl. Math. Comput. 211, 383–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mayer, S., Schleicher, D.: Immediate and virtual basins of Newton’s method for entire functions. Ann. Inst. Fourier 56 (2), 325–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. 125, 467–493 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  57. Nedzhibov, G.H., Hasanov, V.I., Petkov, M.G.: On some families of multi-point iterative methods for solving nonlinear equations. Numer. Algorithms 42 (2), 127–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)

    Article  MathSciNet  Google Scholar 

  59. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)

    MATH  Google Scholar 

  60. Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic, New York (1960)

    MATH  Google Scholar 

  61. Petković, M.S.: On a general class of multipoint root-finding methods of high computational efficiency. SIAM J. Numer. Anal. 47, 4402–4414 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic, Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  63. Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint methods for solving nonlinear equations: a survey. Appl. Math. Comput. 226, 635–660 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Plaza, S., Gutiérrez, J.M.: Dinámica del método de Newton. Material Didáctico de Matemáticas 9, Universidad de La Rioja, Servicio de Publicaciones (2013)

    Google Scholar 

  65. Plaza, S., Romero, N.: Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235, 3238–3244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Schröder, E.: Ueber iterite Functionen. Math. Ann. 3, 296–322 (1871)

    Article  Google Scholar 

  67. Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54 (4), 445–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Sharma, J.R., Guha, R.K., Gupta, P.: Improved King’s methods with optimal order of convergence based on rational approximations. Appl. Math. Lett. 26 (4), 473–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  69. Soleymani, F., Sharifi, M., Mousavi, B.S.: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 153, 225–236 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964)

    MATH  Google Scholar 

  71. Varona, J.: Graphic and numerical comparison between iterative methods. Math. Intell. 24 (1), 37–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang, X., Liu, L.: Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Appl. Math. Lett. 23, 549–554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  73. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Yun, B.I., Petković, M.S.: Iterative methods based on the signum function approach for solving nonlinear equations. Numer. Algorithms 52, 649–662 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This scientific work has been supported by Ministerio de Economía y Competitividad MTM2014-52016-C02-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Torregrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cordero, A., Torregrosa, J.R. (2016). On the Design of Optimal Iterative Methods for Solving Nonlinear Equations. In: Amat, S., Busquier, S. (eds) Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-39228-8_5

Download citation

Publish with us

Policies and ethics