Skip to main content

Experiments in Musical Biocomputing: Towards New Kinds of Processors for Audio and Music

  • Chapter
  • First Online:
Book cover Advances in Unconventional Computing

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 23))

Abstract

The emerging field of Unconventional Computing is developing new algorithms and computing architectures inspired by or implemented in biological, physical and chemical systems. We are investigating how Unconventional Computing may benefit the future of the music industry and related audio engineering technologies. In this chapter, after a brief introduction to Unconventional Computing, we present our research into harnessing the behaviour of a slime mould called Physarum polycephalum to build new kinds of processors for audio and music. The plasmodium of Physarum polycephalum is a large single cell with a myriad of diploid nuclei, which moves like a giant amoeba in its pursuit for food. The organism is amorphous, and although without a brain or any serving centre of control, can respond to the environmental conditions that surround it. As our research progressed, we have successfully harnessed the organism to implement a sound synthesiser and a musical sequencer, grow biological audio wires, and build an interactive biocomputer that can listen and produce musical responses in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. CRC Press, Boca Raton (2001)

    Google Scholar 

  2. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific, Singapore (2010)

    Google Scholar 

  3. Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)

    Article  Google Scholar 

  4. Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum Machine in the dark? Biophys. Rev. Lett. 6(01n02), 29–57 (2011)

    Google Scholar 

  5. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  6. Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Computers. Luniver Press, Frome (2006)

    Google Scholar 

  7. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  8. Beyls, P.: Cellular automata mapping procedures. In: Proceedings of the ICMC. Citeseer (2004)

    Google Scholar 

  9. Braund, E., Miranda, E.: Music with Unconventional Computing: A System for Physarum Polycephalum Sound Synthesis. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S.I (eds.) Sound, Music, and Motion. Lecture Notes in Computer Science, pp. 175–189. Springer International Publishing, Heidelberg (2014)

    Google Scholar 

  10. Braund, E., Miranda, E.: BioComputer music: generating musical responses with Physarum polycephalum-based memristors. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)

    Google Scholar 

  11. Braund, E., Miranda, E.: Music with unconventional computing: granular synthesis with the biological computing substrate Physarum polycephalum. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)

    Google Scholar 

  12. Braund, E., Miranda, E.: Music with unconventional computing: towards a step sequencer from plasmodium of physarum polycephalum. In: Johnson, C., Carballal, A., Correia, J. (eds.) Evolutionary and Biologically Inspired Music, Sound, Art and Design. Lecture Notes in Computer Science, vol. 9027, pp. 15–26. Springer International Publishing, Heidelberg (2015)

    Google Scholar 

  13. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  14. Cifarelli, A., Dimonte, A., Berzina, T., Erokhin, V.: On the loading of slime mold Physarum polycephalum with microparticles for unconventional computing application. BioNanoScience 4(1), 92–96 (2014)

    Article  Google Scholar 

  15. Gabor, D.: Acoustical quanta and the theory of hearing. Nature 159(4044), 591–594 (1947)

    Article  Google Scholar 

  16. Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience 5, 1–8 (2013)

    Google Scholar 

  17. Gale, E., Matthews, O., de Costello, B.L., Adamatzky, A.: Beyond Markov Chains, Towards Adaptive Memristor Network-based Music Generation. arXiv preprint arXiv:1302.0785 (2013)

  18. Gale, E., de Lacy Costello, B., Adamatzky, A.: Emergent spiking in non-ideal memristor networks. Microelectron. J. 45(11), 1401–1415 (2014)

    Google Scholar 

  19. Grimnes, S., Lütken, C.A., Martinsen, O.G.: Memristive properties of electro-osmosis in human sweat ducts. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 Sept 2009, Munich, Germany, pp. 696–698. Springer, Heidelberg (2009)

    Google Scholar 

  20. Johnsen, G.K.: An introduction to the memristor-a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance 3(1), 20–28 (2012)

    Google Scholar 

  21. Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Ijuc 6(2), 125–144 (2010)

    Google Scholar 

  22. Kirke, A., Shadbolt, P., Neville, A., Antoine, A., Miranda, E.: Q-Muse: A quantum computer music system designed for a performance for orchestra, electronics and live internet-connected photonic quantum computer. In: Conference on Interdisciplinary Musicology (CIM). Berlin (2014)

    Google Scholar 

  23. Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)

    Article  Google Scholar 

  24. Meyer, R., Stockem, W.: Studies on microplasmodia of physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)

    Article  Google Scholar 

  25. Miranda, E.: Biocomputer music. http://tinyurl.com/kszgm3r

  26. Miranda, E.R.: Cellular automata music: an interdisciplinary project. J. New Music Res. 22(1), 3–21 (1993)

    Google Scholar 

  27. Miranda, E.R.: Granular synthesis of sounds by means of a cellular automaton. Leonardo 28, 297–300 (1995)

    Google Scholar 

  28. Miranda, E.R.: Evolving cellular automata music: from sound synthesis to composition. In: Proceedings of 2001 Workshop on Artificial Life Models for Musical Applications (2001)

    Google Scholar 

  29. Miranda, E.R.: Computer Sound Design: Synthesis Techniques and Programming, vol. 1. Taylor & Francis, UK (2002)

    Google Scholar 

  30. Miranda, E.R., Bull, L., Gueguen, F., Uroukov, I.S.: Computer music meets unconventional computing: towards sound synthesis with in vitro neuronal networks. Comput. Music J. 33(1), 9–18 (2009)

    Article  Google Scholar 

  31. Miranda, E.R., Adamatzky, A., Jones, J.: Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8(2), 107–113 (2011)

    Article  Google Scholar 

  32. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 21,926 (2009)

    Google Scholar 

  33. Stepney, S.: Programming unconventional computers: dynamics, development, self-reference. Entropy 14(10), 1939–1952 (2012)

    Article  MATH  Google Scholar 

  34. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  35. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J. Math. 58(345–363), 5 (1936)

    MATH  Google Scholar 

  36. von Neumann, J.: First Draft of a Report on the EDVAC (1945)

    Google Scholar 

  37. Volkov, A., Reedus, J., Mitchell, C.M., Tucket, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 9(4), e29,056 (2014)

    Google Scholar 

  38. Xenakis, I.: Formalized Music: Thought and Mathematics in Composition, vol. 6. Pendragon, United States (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Reck Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miranda, E.R., Braund, E. (2017). Experiments in Musical Biocomputing: Towards New Kinds of Processors for Audio and Music. In: Adamatzky, A. (eds) Advances in Unconventional Computing. Emergence, Complexity and Computation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-33921-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33921-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33920-7

  • Online ISBN: 978-3-319-33921-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics