Skip to main content

Spherical Collapse in Galileon Gravity

  • Chapter
  • First Online:
  • 380 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As we have mentioned in the previous chapters, the inclusion of data related to the growth of structure on scales \({\lesssim }10\,\mathrm{Mpc}\)/h in tests of Galileon gravity requires modelling of some physics which can only be tackled by going beyond linear theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The content in this chapter is based on the article Barreira et al. “Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias”, Journal of Cosmology and Astroparticle Physics, Volume 2013, Published 27 November 2013, © IOP Publishing Ltd. Reproduced with permission. All rights reserved, http://dx.doi.org/10.1088/1475-7516/2013/11/056 (Ref. [1]).

  2. 2.

    Note that \(\partial _r\varphi = \partial _r\delta \varphi \) is a perturbed quantity.

  3. 3.

    The Cubic Galileon model is also the best-fitting one to the WMAP9 \(+\) SNLS \(+\) BAO dataset, obtained with the strategy presented in Ref. [5]. The nonlinear structure formation in this model shall be studied in Chap. 5.

  4. 4.

    Near black holes, for instance, one can have larger metric perturbations \(\Psi \sim 1\).

  5. 5.

    We note that if we solve the model equations in perturbed Minkowski space (instead of FRW), then \(\dot{\varphi } = 0\) and \(G_\mathrm{eff} \rightarrow 1\), when \(\delta \gg 1\). We discuss this issue further in Chap. 6, when we encounter a similar problem in Nonlocal gravity models.

  6. 6.

    In the case of \(\delta _c\), we will avoid writing the subscript \(_\mathrm{lin}\) to ease the notation.

  7. 7.

    Note that one can use \(\Lambda \)CDM to compute the matter power spectrum of the Galileon model at the initial time, but one has to use the parameters given in Table 4.1.

  8. 8.

    Just like for \(\delta _c\), we will avoid writing the subscript \(_\mathrm{lin}\) in \(\delta _0\) to ease the notation.

  9. 9.

    Not to be confused with the initial times of Table 4.1.

  10. 10.

    Explicitly: \(\bar{\rho }_ma^3R^3 = \left( 1+\delta \right) \bar{\rho }_mr^3 \Rightarrow \delta = \left( aR/r\right) ^3 - 1 = y^{-3} - 1\).

  11. 11.

    In other words, if \(\delta _c\) is lower then the random walks first up-cross the barrier sooner (low S), rather than later (high S).

References

  1. Barreira A, Li B, Baugh CM, Pascoli S (2013) Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias. JCAP, 1311:056. arXiv:1308.3699

    Google Scholar 

  2. Bond JR, Cole S, Efstathiou G, Kaiser N (1991) Excursion set mass functions for hierarchical Gaussian fluctuations. ApJ 379:440–460

    Article  ADS  Google Scholar 

  3. Barreira A, Li B, Baugh CM, Pascoli S (2012) Linear perturbations in Galileon gravity models. Phys Rev D86:124016. arXiv:1208.0600

  4. De Felice A, Kase R, Tsujikawa S (2011) Matter perturbations in Galileon cosmology. Phys Rev D83:043515. arXiv:1011.6132

  5. Barreira A, Li B, Sanchez A, Baugh CM, Pascoli S (2013). The parameter space in Galileon gravity models. Phys Rev D87:103511. arXiv:1302.6241

  6. Hinshaw G, Larson D, Komatsu E, Spergel DN, Bennett et al CL (2012) Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226

  7. Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404:60–85. arXiv:0907.1659

  8. Bellini E, Bartolo N, Matarrese S (2012) Spherical collapse in covariant Galileon theory. JCAP 1206:019. arXiv:1202.2712

    Google Scholar 

  9. Babichev E, Deffayet C, Esposito-Farese G (2011) Constraints on shift-symmetric scalar-tensor theories with a vainshtein mechanism from bounds on the time variation of G. Phys Rev Lett 107:251102. arXiv:1107.1569

  10. Kimura R, Kobayashi T, Yamamoto K (2012) Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory. Phys Rev D85:024023. arXiv:1111.6749

  11. Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101. arXiv:gr-qc/0411113

  12. Winther HA, Ferreira PG, in preparation

    Google Scholar 

  13. Andrew ZR (2007) The excursion set theory of halo mass functions, halo clustering, and halo growth. Int J Mod Phys D 16:763–816. arXiv:astro-ph/0611454

  14. Gaztanaga E, Alberto Lobo J (2001) Nonlinear gravitational growth of large scale structures inside and outside standard cosmology. Astrophys J 548:47–59. arXiv:astro-ph/0003129

    Google Scholar 

  15. Schaefer BM, Koyama K (2008) Spherical collapse in modified gravity with the Birkhoff-theorem. Mon Not Roy Astron Soc 385:411–422. arXiv:0711.3129

  16. Martino MC, Stabenau HF, Sheth RK (2009) Spherical collapse and modified gravity. Phys Rev D79:084013. arXiv:0812.0200

  17. Li B, Efstathiou G (2012) An extended excursion set approach to structure formation in chameleon models. Mon Not Roy Astron Soc 421:1431. arXiv:1110.6440

    Google Scholar 

  18. Borisov A, Jain B, Zhang P (2012) Spherical collapse in f(R) gravity. Phys Rev D85:063518. arXiv: 1102.4839

  19. Lam TY, Li B (2012) Excursion set theory for modified gravity: correlated steps, mass functions and halo bias. Mon Not Roy Astron Soc 426:3260–3270. arXiv:1205.0059

    Google Scholar 

  20. Li B, Lam TY (2012) Excursion set theory for modified gravity: Eulerian versus Lagrangian environments. 425: 730, MNRAS. arXiv:1205.0058

  21. Joseph C, Cai Y-C (2013) Voids in modified gravity: excursion set predictions. 431:749C, MNRAS. arXiv:1212:2216

  22. Lombriser L, Li B, Koyama K, Zhao G-B (2013) Modeling halo mass functions in chameleon f(R) gravity. Phys Rev D 87 123511. arXiv:1304.6395

  23. Kopp M, Appleby SA, Achitouv I, Weller J (2013) Spherical collapse and halo mass function in f(R) theories. Phys Rev D. arXiv:1306.3233

  24. Bardeen JM, Bond JR, Kaiser N, Szalay AS (1986) The statistics of peaks of Gaussian random fields. Astrophys J 304:15–61

    Google Scholar 

  25. Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. ApJ 187:425–438

    Article  ADS  Google Scholar 

  26. Parfrey K, Hui L, Sheth RK (2011) Scale-dependent halo bias from scale-dependent growth. Phys Rev D83:063511. arXiv:1012.1335

  27. Mo HJ, White SDM (1996) An analytic model for the spatial clustering of dark matter halos. Mon Not Roy Astron Soc 282:347. arXiv:astro-ph/9512127

    Google Scholar 

  28. Fry JN, Enrique G (1993) Biasing and hierarchical statistics in large scale structure. Astrophys J. 413:447–452. arXiv:astro-ph/9302009

    Google Scholar 

  29. Sheth RK, Giuseppe T (1999) Large scale bias and the peak background split. Mon Not Roy Astron Soc 308:119. arXiv:astro-ph/9901122

    Google Scholar 

  30. Sheth RK, Mo HJ, Tormen G (2001) Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon Not Roy Astron Soc 323:1. arXiv:astro-ph/9907024

    Google Scholar 

  31. Sheth RK, Giuseppe T (2002) An excursion set model of hierarchical clustering : ellipsoidal collapse and the moving barrier. Mon Not Roy Astron Soc 329:61. arXiv:astro-ph/0105113

    Google Scholar 

  32. Barreira A, Li B, Hellwing WA, Baugh CM, Pascoli S (2013) Nonlinear structure formation in the cubic Galileon gravity model. JCAP 2013(10):027. arXiv:1306.3219

    Google Scholar 

  33. Li B, Barreira A, Baugh CM, Hellwing WA, Koyama K et al (2013) Simulating the quartic Galileon gravity model on adaptively refined meshes. JCAP. arXiv:1311:012

    Google Scholar 

  34. Asantha C, Sheth RK (2002) Halo models of large scale structure. Phys Rept 372:1–129. arXiv:astro-ph/0206508

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Barreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreira, A. (2016). Spherical Collapse in Galileon Gravity. In: Structure Formation in Modified Gravity Cosmologies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-33696-1_4

Download citation

Publish with us

Policies and ethics