Skip to main content

Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

In dislocation-mediated plasticity of crystalline materials, discrete dislocation dynamics (DDD) methods have been widely used to predict the plastic deformation in a number of technologically important problems. These simulations have led to significant improvement in the understanding of the different mechanism that controls the mechanical properties of crystalline materials, which can greatly accelerate the future development of materials with superior properties. This chapter provides an overview of different practical applications of both two-dimensional and three-dimensional DDD simulations in the field of size-affected dislocation-mediated plasticity. The chapter is divided into two major tracks. First, DDD simulations focusing on aspects of modeling size-dependent plasticity in single crystals in uniaxial micro-compression/tension, microtorsion, microbending, and nanoindentation are discussed. Special attention is directed towards the role of cross-slip and dislocation nucleation on the overall response. Second, DDD simulations focusing on the role of interfaces, including grain and twin boundaries, on dislocation-mediated plasticity are discussed. Finally, a number of challenges that are withholding DDD simulations from reaching their full potential are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.D. Uchic, P.A. Shade, D.M. Dimiduk, Plasticity of micrometer-scale single crystals in compression: a critical review. Ann. Rev. Mater. Res. 39 (1), 361–386 (2009)

    Article  Google Scholar 

  2. G.G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. ASME. J. Heat Tran. 119 (2), 220–229 (1997)

    Article  Google Scholar 

  3. D.L. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chem. Mater. 8 (8), 1770–1783 (1996)

    Article  Google Scholar 

  4. T.M. Shaw, S. Trolier-McKinstry, P.C. McIntyre, The properties of ferroelectric films at small dimensions. Ann. Rev. Mater. Sci. 30, 263–298 (2000)

    Article  Google Scholar 

  5. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004)

    Article  Google Scholar 

  6. D. Kiener, A.M. Minor, Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett. 11, 3816–3820 (2011)

    Article  Google Scholar 

  7. O. Kraft, P.A. Gruber, R. Monig, D. Weygand, Plasticity in confined dimensions. Ann. Rev. Mater. Res. 40, 293–317 (2010)

    Article  Google Scholar 

  8. J.S. Stolken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  9. C. Motz, T. Schoberl, R. Pippan, Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater. 53, 4269–4279 (2005)

    Article  Google Scholar 

  10. G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Ann. Rev. Mater. Res. 40, 271–292 (2010)

    Article  Google Scholar 

  11. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  12. M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427–556 (2006)

    Article  Google Scholar 

  13. J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015)

    Article  Google Scholar 

  14. A.F. Voter, Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, R13985 (1998)

    Article  Google Scholar 

  15. A.F. Voter, Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys. Rev. Lett. 78, 3908–3911 (1997)

    Article  Google Scholar 

  16. F. Montalenti, M.R. Sorensen, A.R. Voter, Closing the gap between experiment and theory: crystal growth by temperature accelerated dynamics. Phys. Rev. Lett. 87, 126101 (2001)

    Article  Google Scholar 

  17. R. LeSar, J.M. Rickman, Coarse Graining of Dislocation Structure and Dynamics (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2005), pp. 429–444

    Google Scholar 

  18. J. Lepinoux, L.P. Kubin, The dynamic organization of dislocation structures: a simulation. Scripta Metall. 21 (6), 833 – 838 (1987)

    Article  Google Scholar 

  19. E. Van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3 (5), 689–735 (1995)

    Article  Google Scholar 

  20. A.A. Benzerga, Y. Brechet, A. Needleman, E. Van der Giessen, Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 12 (1), 159–196 (2004)

    Article  Google Scholar 

  21. B. Devincre, L.P. Kubin, Simulations of forest interactions and strain hardening in FCC crystals. Model. Simul. Mater. Sci. Eng. 2, 559 (1994)

    Article  Google Scholar 

  22. H.M. Zbib, M. Rhee, J.P. Hirth, On plastic deformation and the dynamics of 3-D dislocations. J. Mech. Sci. 40 (2–3), 113–127 (1998)

    Article  Google Scholar 

  23. N.M. Ghoniem, L.Z. Sun, Fast sum method for the elastic field of 3-D dislocation ensembles. Phys. Rev. B 60 (1), 128–140 (1999)

    Article  Google Scholar 

  24. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréechet, Dislocation microstructures and plastic flow: a 3-D simulation. Solid State Phenom. 23–24, 455–472 (1992)

    Article  Google Scholar 

  25. M. Verdier, M. Fivel, I. Groma, Mesoscopic scale simulation of dislocation dynamics in FCC metals: principles and applications. Model. Simul. Mater. Sci. Eng. 6 (6), 755–770 (1998)

    Article  Google Scholar 

  26. K.W. Schwarz, Simulation of dislocations on the mesoscopic scale. J. Appl. Phys. 85 (1), 108–129 (1999)

    Article  Google Scholar 

  27. D. Weygand, L.H. Friedman, E. van der Giessen, A. Needleman, Discrete dislocation modeling in three-dimensional confined volumes. Mater. Sci. Eng. A 309–310, 420–424 (2001)

    Article  Google Scholar 

  28. H.M. Zbib, M. Rhee, J.P. Hirth, A multiscale model of plasticity. Int. J. Plast. 18, 1133–1163 (2002)

    Article  Google Scholar 

  29. Z. Wang, N.M. Ghoniem, S. Swaminarayan, R. LeSar, A parallel algorithm for 3d dislocation dynamics. J. Comp. Phys. 219 (2), 608–621 (2006)

    Article  Google Scholar 

  30. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15 (6), 553–595 (2007)

    Article  Google Scholar 

  31. J.R. Greer, J.Th.M. De Hosson, Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56 (6), 654–724 (2011)

    Google Scholar 

  32. D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53 (15), 4065–4077 (2005)

    Article  Google Scholar 

  33. D. Kiener, W. Grosinger, G. Dehm, R. Pippan, A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008)

    Article  Google Scholar 

  34. J.A. El-Awady, M.D. Uchic, P. Shade, S.-L Kim, S.I. Rao, D.M. Dimiduk, C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in ni single crystals. Scrtipta Mater. 68, 207–210 (2013)

    Google Scholar 

  35. A.S. Schneider, D. Kiener, C.M. Yakacki, H.J. Maier, P.A. Gruber, N. Tamura, M. Kunz, A.M. Minor, C.P. Frick, Influence of bulk pre-straining on the size effect in nickel compression pillars. Mater. Sci. Eng. A 559 (0), 147–158 (2013)

    Google Scholar 

  36. D.S. Balint, V.S. Deshpande, A. Needleman, E. Van der Giessen, Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis. Model. Simul. Mater. Sci. Eng. 14, 409–422 (2006)

    Article  Google Scholar 

  37. V.S. Deshpande, A. Needleman, E. Van der Giessen, Plasticity size effects in tension and compression of single crystals. J. Mech. Phys. Solids 53 (12), 2661–2691 (2005)

    Article  Google Scholar 

  38. C. Hou, Z. Li, M. Huang, C. Ouyang, Discrete dislocation plasticity analysis of single crystalline thin beam under combined cyclic tension and bending. Acta Mater. 56, 1435–1446 (2008)

    Article  Google Scholar 

  39. L. Nicola, E. Van der Giessen, A. Needleman, Discrete dislocation analysis of size effects in thin films. J. Appl. Phys. 93, 5920–5928 (2003)

    Article  Google Scholar 

  40. C. Ouyang, Z. Li, M. Huang, L. Hu, C. Hou, Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: two-dimensional discrete dislocation dynamics modeling. Mater. Sci. Eng. A 526, 235–243 (2009)

    Article  Google Scholar 

  41. A.A. Benzerga, Micro-pillar plasticity: 2.5D mesoscopic simulations. J. Mech. Phys. Solids 57 (9), 1459–1469 (2009)

    Google Scholar 

  42. A.A. Benzerga, N.F. Shaver, Scale dependence of mechanical properties of single crystals under uniform deformation. Scripta Mater. 54 (11), 1937–1941 (2006)

    Article  Google Scholar 

  43. P.J. Guruprasad, A.A. Benzerga, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis. J. Mech. Phys. Solids 56 (1), 132–156 (2008)

    Article  Google Scholar 

  44. D. Kiener, P.J. Guruprasad, S.M. Keralavarma, G. Dehm, A.A. Benzerga, Work hardening in micropillar compression: in situ experiments and modeling. Acta Mater. 59 (10), 3825–3840 (2011)

    Article  Google Scholar 

  45. J.A. El-Awady, S.B. Biner, N.M. Ghoniem, A self-consistent boundary element, parametric dislocation dynamics formulation of plastic flow in finite volumes. J. Mech. Phys. Solids 56 (5), 2019–2035 (2008)

    Article  Google Scholar 

  46. C. Motz, D. Weygand, J. Senger, P. Gumbsch, Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57 (6), 1744–1754 (2009)

    Article  Google Scholar 

  47. J.A. El-Awady, M. Wen, N.M. Ghoniem, The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phys. Solids 57 (1), 32–50 (2009)

    Article  Google Scholar 

  48. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, C. Woodward, Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56 (13), 3245–3259 (2008)

    Article  Google Scholar 

  49. C. Zhou, S.B. Biner, R. LeSar, Discrete dislocation dynamics simulations of plasticity at small scales. Acta. Mater. 58 (5), 1565–1577 (2010)

    Article  Google Scholar 

  50. H. Tang, K.W. Schwarz, H.D. Espinosa, Dislocation-source shutdown and the plastic behavior of single-crystal micropillars. Phys. Rev. Lett. 100, 185503 (2008)

    Article  Google Scholar 

  51. I. Ryu, W.D. Nix, W. Cai, Plasticity of BCC micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater. 61 (9), 3233–3241 (2013)

    Article  Google Scholar 

  52. Z.H. Aitken, H. Fan,, J.A. El-Awady, J.R. Greer, The effect of size, orientation and alloying on the deformation of AZ31 nanopillars. J. Mech. Phys. Solids 76, 208–223 (2015)

    Article  Google Scholar 

  53. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater. 56 (4), 313–316 (2007)

    Article  Google Scholar 

  54. F. Mompiou, M. Legros, A. Sedlmayr, D.S. Gianola, D. Caillard, O. Kraft, Source-based strengthening of sub-micrometer al fibers. Acta Mater. 60 (3), 977–983 (2012)

    Article  Google Scholar 

  55. D. Hull, D.J. Bacon, Introduction to Dislocations, (Butterworth-Heinemann, Oxford, 2011)

    Google Scholar 

  56. A.M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, J.A. El-Awady, Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in FCC crystals. Acta Mater. 85, 180–190 (2015)

    Article  Google Scholar 

  57. S.I. Rao, D.M. Dimiduk, J.A. El-Awady, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Atomistic simulations of athermal cross-slip nucleation at screw dislocation intersections in face-centered cubic nickel. Phil. Mag. 89 (34–36), 3351–3369 (2009)

    Article  Google Scholar 

  58. S.I. Rao, D.M. Dimiduk, J.A. El-Awady, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation. Acta Mater. 58, 5547–5557 (2010)

    Article  Google Scholar 

  59. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, J. El-Awady, Woodward C., M.D. Uchic, Calculations of intersection cross-slip activation energies in FCC metals using nudged elastic band method. Acta Mater. 59 (19), 7135–7144 (2011)

    Google Scholar 

  60. S.I. Rao, D.M. Dimiduk, J.A. El-Awady, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Spontaneous athermal cross-slip nucleation at screw dislocation intersections in FCC metals and L12 intermetallics investigated via atomistic simulations. Phil. Mag. 93 (22), 3012–3028 (2013)

    Article  Google Scholar 

  61. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Atomistic simulations of surface cross-slip nucleation in face-centered cubic nickel and copper. Acta Mater. 61 (7), 2500–2508 (2013)

    Article  Google Scholar 

  62. Q. Yu, R.K. Mishra, J.W. Morris, A.M. Minor, The effect of size on dislocation cell formation and strain hardening in aluminum. Phil. Mag. 94, 2062–2071 (2014)

    Article  Google Scholar 

  63. L.Y. Chen, M.R. He, J. Shin, G. Richter, D.S. Gianola, Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat. Mater. 14, 707–713 (2015)

    Article  Google Scholar 

  64. H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J. Wang, Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1, 144 (2010)

    Article  Google Scholar 

  65. C.R. Weinberger, A.T. Jennings, K. Kang, J.R. Greer, Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. J. Mech. Phys. Solids 60 (1), 84–103 (2012)

    Article  Google Scholar 

  66. Y. Tang, J.A. El-Awady, Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals. Acta Mater. 71, 319–332 (2014)

    Article  Google Scholar 

  67. M. Wagih, Y. Tang, T. Hatem, J.A. El-Awady, Discerning enhanced dislocation plasticity in hydrogen-charged α-iron nano-crystals. Mater. Res. Lett. 3, 184–189 (2015)

    Article  Google Scholar 

  68. I Ryu, W. Cai, W.D. Nix, H. Gao, Stochastic behaviors in plastic deformation of face-centered cubic micropillars governed by surface nucleation and truncated source operation. Acta Mater. 95, 176–183 (2015)

    Google Scholar 

  69. Z.W. Shan, R.K. Mishra, S.A.S. Asif, O.L. Warren, A.M. Minor, Mechanical annealing and source-limited deformation in submicrometer-diameter Ni crystals. Nat. Mater. 7, 115–119 (2008)

    Article  Google Scholar 

  70. H. Fan, Z. Li, M. Huang, Size effect on the compressive strength of hollow micropillars governed by wall thickness. Scripta Mater. 67, 225–228 (2012)

    Article  Google Scholar 

  71. J.A. El-Awady, S.I. Rao, C. Woodward, D.M. Dimiduk, M.D. Uchic, Trapping and escape of dislocations in micro-crystals with external and internal barriers. Int. J. Plast. 27 (3), 372–387 (2011)

    Article  Google Scholar 

  72. K.S. Ng, A.H.W. Ngan, Effects of trapping dislocations within small crystals on their deformation behavior. Acta Mater. 57 (16), 4902–4910 (2009)

    Article  Google Scholar 

  73. C.R. Weinberger, W. Cai, Plasticity of metal wires in torsion: molecular dynamics and dislocation dynamics simulations. J. Mech. Phys. Solids 58, 1011–1025 (2010)

    Article  Google Scholar 

  74. C.R. Weinberger, The structure and energetics of, the plasticity caused by Eshelby dislocations. Int. J. Plast. 27, 1391–1408 (2011)

    Article  Google Scholar 

  75. J. Senger, D. Weygand, C. Motz, P. Gumbsch, O. Kraft, Evolution of mechanical response and dislocation microstructures in small-scale specimens under slightly different loading conditions. Philos. Mag. 90, 617–628 (2010)

    Article  Google Scholar 

  76. J. Senger, D. Weygand, O. Kraft, P. Gumbsch, Dislocation microstructure evolution in cyclically twisted microsamples: a discrete dislocation dynamics simulation. Model. Simul. Mater. Sci. Eng. 19, 074004 (2011)

    Article  Google Scholar 

  77. J. Chevy, F. Louchet, P. Duval, M. Fivel, Creep behaviour of ice single crystals loaded in torsion explained by dislocation cross-slip. Phil. Mag. Lett. 92, 262–269 (2012)

    Article  Google Scholar 

  78. G. Dehm, C. Motz, C. Scheu, H. Clemens, P.H. Mayrhofer, C. Mitterer, Mechanical size-effects in miniaturized and bulk materials. Adv. Eng. Mater. 8, 1033–1045 (2006)

    Article  Google Scholar 

  79. H. Fan, Q. Wang, M.K. Khan, Cyclic bending response of single- and polycrystalline thin films: two dimensional discrete dislocation dynamics. Appl. Mech. Mater. 275–277, 132–137 (2013)

    Article  Google Scholar 

  80. S. Yefimov, E. van der Giessen, I. Groma, Bending of a single crystal: discrete dislocation and nonlocal crystal plasticity simulations. Model. Simul. Mater. Sci. Eng. 12, 1069 (2004)

    Article  Google Scholar 

  81. D. Kiener, C. Motz, W. Grosinger, D. Weygand, R. Pippan, Cyclic response of copper single crystal micro-beams. Scripta Mater. 63, 500–503 (2010)

    Article  Google Scholar 

  82. C. Motz, D. Weygand, J. Senger, P. Gumbsch, Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater. 56 (9), 1942–1955 (2008)

    Article  Google Scholar 

  83. C. Motz, D.J. Dunstan, Observation of the critical thickness phenomenon in dislocation dynamics simulation of microbeam bending. Acta Mater. 60, 1603–1609 (2012)

    Article  Google Scholar 

  84. J.C. Crone, P.W. Chung, K.W. Leiter, J. Knap, S. Aubry, G. Hommes, A. Arsenlis, A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries. Model. Simul. Mater. Sci. Eng. 22 (3), 035014 (2014)

    Google Scholar 

  85. F. Akasheh, H.M. Zbib, T. Ohashi, Multiscale modelling of size effect in FCC crystals: discrete dislocation dynamics and dislocation-based gradient plasticity. Philos. Mag. 87, 1307–1326 (2007)

    Article  Google Scholar 

  86. S. Gupta, A. Ma, A. Hartmaier, Investigating the influence of crystal orientation on bending size effect of single crystal beams. Comp. Mater. Sci. 101, 201–210 (2015)

    Article  Google Scholar 

  87. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, Y.L. Shen, Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 55 (12), 4015–4039 (2007)

    Article  Google Scholar 

  88. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46 (3), 411–425 (1998)

    Article  Google Scholar 

  89. J.G. Swadener, E.P. George, G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)

    Article  Google Scholar 

  90. A.K. Nair, E. Parker, P. Gaudreau, D. Farkas, Kriz R.D, Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study. Int. J. Plast. 24, 2016–2031 (2008)

    Google Scholar 

  91. V. Dupont, F. Sansoz, Molecular dynamics study of crystal plasticity during nanoindentation in ni nanowires. J. Mater. Res. 24, 948–956 (2009)

    Article  Google Scholar 

  92. C.Y. Chan, Y.Y. Chen, S.W. Chang, C.S. Chen, Atomistic studies of nanohardness size effects. Int. J. Theor. Appl. Multiscale Mech. 2, 62–71 (2011)

    Article  Google Scholar 

  93. T. Tomohito, S. Yoji, Atomistic simulations of elastic deformation and dislocation nucleation in al under indentation-induced stress distribution. Model. Simul. Mater. Sci. Eng. 14, S55 (2006)

    Article  Google Scholar 

  94. G.Z. Voyiadjis, M. Yaghoobi, Large scale atomistic simulation of size effects during nanoindentation: dislocation length and hardness. Mater. Sci. Eng. A. 634, 20–31 (2015)

    Article  Google Scholar 

  95. A. Widjaja, E. Van der Giessen, A. Needleman, Discrete dislocation modelling of submicron indentation. Mater. Sci. Eng. A. 400–401, 456–459 (2005)

    Article  Google Scholar 

  96. A. Widjaja, E. Van der Giessen, A. Needleman, Discrete dislocation analysis of the wedge indentation of polycrystals. Acta Mater. 55, 6408–6415 (2007)

    Article  Google Scholar 

  97. A. Widjaja, A. Needleman, E. Van der Giessen, The effect of indenter shape on sub-micron indentation according to discrete dislocation plasticity. Model. Simul. Mater. Sci. Eng. 15, S121 (2007)

    Article  Google Scholar 

  98. D.S. Balint, V.S. Deshpande, A. Needleman, E. Van der Giessen, Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech Phys. Solids 54 (11), 2281–2303 (2006)

    Article  Google Scholar 

  99. H.G.M. Kreuzer, R. Pippan, Discrete dislocation simulation of nanoindentation: the effect of moving conditions and indenter shape. Mater. Sci. Eng. A. 387–389, 254–256 (2004)

    Article  Google Scholar 

  100. H.G.M. Kreuzer, R. Pippan, Discrete dislocation simulation of nanoindentation: indentation size effect and the influence of slip band orientation. Acta Mater. 55, 3229–3235 (2007)

    Article  Google Scholar 

  101. C. Ouyang, Z. Li, M. Huang, C. Hou, Discrete dislocation analyses of circular nanoindentation and its size dependence in polycrystals. Acta Mater. 56, 2706–2717 (2008)

    Article  Google Scholar 

  102. C. Ouyang, M. Huang, Z. Li, L. Hu, Circular nano-indentation in particle-reinforced metal matrix composites: simply uniformly distributed particles lead to complex nano-indentation response. Comp. Mater. Sci. 47, 940–950 (2010)

    Article  Google Scholar 

  103. C. Ouyang, Z. Li, M. Huang, H. Fan, Cylindrical nano-indentation on metal film/elastic substrate system with discrete dislocation plasticity analysis: a simple model for nano-indentation size effect. Int. J. Solids Struct. 47, 3103–3114 (2010)

    Article  Google Scholar 

  104. M.C. Fivel, C.F. Robertson, G.R. Canova, L. Boulanger. Three-dimensional modeling of indent-induced plastic zone at a mesoscale. Acta Mater. 46, 6183–6194 (1998)

    Article  Google Scholar 

  105. M. Fivel, M. Verdier, G. Canova, 3d simulation of a nanoindentation test at a mesoscopic scale. Mater. Sci. Eng. A 234, 923–926 (1997)

    Article  Google Scholar 

  106. G. Po, M.S. Mohamed, T. Crosby, C. Erel, A. El-Azab, N. Ghoniem, Recent progress in discrete dislocation dynamics and its applications to micro plasticity. J. Mater. 66, 2108–2120 (2014)

    Google Scholar 

  107. J.P. Hirth, The influence of grain boundaries on mechanical properties. Metall. Trans. 3, 3047–3067 (1972)

    Article  Google Scholar 

  108. S.B. Biner, J.R. Morris, A two-dimensional discrete dislocation simulation of the effect of grain size on strengthening behaviour. Model. Sim. Mater. Sci. Eng. 10, 617 (2002)

    Article  Google Scholar 

  109. S.B. Biner, J.R. Morris, The effects of grain size and dislocation source density on the strengthening behaviour of polycrystals: a two-dimensional discrete dislocation simulation. Phil. Mag. 83, 3677–3690 (2003)

    Article  Google Scholar 

  110. D.S. Balint, V.S Deshpande, A. Needleman, E. Van der Giessen, A discrete dislocation plasticity analysis of grain-size strengthening. Mater. Sci. Eng. A 400–401, 186–190 (2005)

    Google Scholar 

  111. D.S. Balint, V.S. Deshpande, A. Needleman, E. Van der Giessen, Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals. Int. J. Plast. 24, 2149–2172 (2008)

    Article  Google Scholar 

  112. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Orientation influence on grain size effects in ultrafine-grained magnesium. Scripta Mater. 97, 25–28 (2015)

    Article  Google Scholar 

  113. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater. 92, 126–139 (2015)

    Article  Google Scholar 

  114. C. Zhou, R. Lesar, Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int. J. Plast. 30–31, 185–201 (2012)

    Article  Google Scholar 

  115. H. Fan, Z. Li, M. Huang, X. Zhang, Thickness effects in polycrystalline thin films: surface constraint versus interior constraint. Int. J. Solids. Struct. 48, 1754–1766 (2011)

    Article  Google Scholar 

  116. Z. Li, C. Hou, M. Huang, C. Ouyang, Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall–Petch effect. Comp. Mater. Sci. 46 (4), 1124–1134 (2009)

    Article  Google Scholar 

  117. C. Hou, Z. Li, M. Huang, C. Ouyang, Cyclic hardening behavior of polycrystals with penetrable grain boundaries: two-dimensional discrete dislocation dynamics simulation. Acta Mater. Solida Sin. 22, 295–306 (2009)

    Article  Google Scholar 

  118. H. Fan, Z. Li, Toward a further understanding of intermittent plastic responses in the compressed single/bi-crystalline micro-pillars. Scripta Mater. 66, 813–816 (2012)

    Article  Google Scholar 

  119. S.S. Quek, Z. Wu, Y.W. Zhang, D.J. Srolovitz, Polycrystal deformation in a discrete dislocation dynamics framework. Acta Mater. 75, 92–105 (2014)

    Article  Google Scholar 

  120. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Discrete dislocation dynamics simulations of twin size-effects in magnesium, in MRS Proceedings, vol. 1741 (2015)

    Google Scholar 

  121. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Grain size effects on dislocation and twinning mediated plasticity in magnesium. Scripta Mater. 112, 50–53 (2015)

    Article  Google Scholar 

  122. R. Kumar, F. Szekely, E. Van der Giessen, Modelling dislocation transmission across tilt grain boundaries in 2D. Comput. Mater. Sci. 49, 46–54 (2010)

    Article  Google Scholar 

  123. S. Miyazaki, K. Shibata, H. Fujita, Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metall. 27, 855–862 (1979)

    Article  Google Scholar 

  124. C. Keller, E. Hug, X. Feaugas, Microstructural size effects on mechanical properties of high purity nickel. Int. J. Plast. 27 (4), 635–654 (2011)

    Article  Google Scholar 

  125. Y. Zhu, Z. Li, M. Huang, Coupled effect of sample size and grain size in polycrystalline al nanowires. Scripta Mater. 68, 663–666 (2013)

    Article  Google Scholar 

  126. R. Kumar, L. Nicola, E. Van der Giessen, Density of grain boundaries and plasticity size effects: a discrete dislocation dynamics study. Mater. Sci. Eng. A 527 (1–2), 7–15 (2009)

    Article  Google Scholar 

  127. C. Keller, E. Hug, R. Retoux, X. Feaugas, TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech. Mater. 42 (1), 44–54 (2010)

    Article  Google Scholar 

  128. J.T. Gau, C. Principe, J. Wang, An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J. Mater. Proc. Tech. 184, 42–46 (2007)

    Article  Google Scholar 

  129. L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens, Size effects in the processing of thin metal sheets. J. Mater. Process. Technol. 115, 44–48 (2001)

    Article  Google Scholar 

  130. C. Zhou, I.J. Beyerlein, R. LeSar, Plastic deformation mechanisms of FCC single crystals at small scales. Acta Mater. 59 (20), 7673–7682 (2011)

    Article  Google Scholar 

  131. C. Keller, E. Hug, A.M. Habraken, L. Duchene, Finite element analysis of the free surface effects on the mechanical behavior of thin nickel polycrystals. Int. J. Plast. 29, 155–172 (2012)

    Article  Google Scholar 

  132. P.A. Dubos, E. Hugm, S. Thibault, M. Ben Bettaieb, C. Keller, Size effects in thin face-centered cubic metals for different complex forming loadings. Metall. Mater. Trans. A 44, 5478–5487 (2013)

    Article  Google Scholar 

  133. S.M. Keralavarma, T. Cagin, A. Arsenlis, A.A. Benzerga, Power-law creep from discrete dislocation dynamics. Phys. Rev. Lett. 109, 265504 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by DARPA contract #N66001-12-1-4229, the Army Research Laboratory contract #W911NF-12-2-0022, and the National Science Foundation CAREER Award #CMMI-1454072. Author H.F. also acknowledges the financial support of the National Science Foundation of China (11302140) and Program for Innovative Research Team (IRT14R37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaafar A. El-Awady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Awady, J.A., Fan, H., Hussein, A.M. (2016). Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_11

Download citation

Publish with us

Policies and ethics