Skip to main content

Abstract

In space the human body and, in particular, the cardiovascular system are exposed to an altered and unfamiliar environment. The new set of stimuli imposes novel challenges on the cardiovascular system. More precisely, a lack of the impeding gravitational force makes some cardiovascular functions more facile. Upon injection to space, extensive mechanisms that have been evolutionarily developed to cope with the burden of gravity become redundant. Next to the skeletal and muscular system, the cardiovascular system is less strained in weightlessness than on Earth and is deconditioned during longer periods spent in space. As far as current experience has shown, this process continues throughout the stay in microgravity and poses severe challenges to astronauts returning to Earth. One must understand the timeframe and severity of all areas of cardiovascular deconditioning in order to evaluate the feasibility of manned missions and ensuring a safe return to a gravitational field—be it Earth, Mars, or another planet. This chapter outlines our current knowledge of cardiovascular deconditioning in microgravity, hypothesized through terrestrial simulations and partly validated by experiments in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaffney FA, Nixon JV, Karlsson ES, Campbell W, Dowdey AB, Blomqvist CG (1985) Cardiovascular deconditioning produced by 20 hours of bedrest with head-down tilt (−5 degrees) in middle-aged healthy men. Am J Cardiol 56(10):634–638

    Article  CAS  PubMed  Google Scholar 

  2. Platts SH, Martin DS, Stenger MB, Perez SA, Ribeiro LC, Summers R, Meck JV (2009) Cardiovascular adaptations to long-duration head-down bed rest. Aviat Space Environ Med 80(5 Suppl):A29–A36

    Article  PubMed  Google Scholar 

  3. Iwasaki KI, Zhang R, Zuckerman JH, Pawelczyk JA, Levine BD (2000) Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure. Am J Physiol Regul Integr Comp Physiol 279(6):R2189–R2199

    CAS  PubMed  Google Scholar 

  4. Eckberg DL, Fritsch JM (1992) Influence of ten-day head-down bedrest on human carotid baroreceptor-cardiac reflex function. Acta Physiol Scand Suppl 604:69–76

    CAS  PubMed  Google Scholar 

  5. Shulzhenko EB, Vil-Vilyams IF, Khudyakova MA, Grigoryev AI (1976) Deconditioning during prolonged immersion and possible countermeasures. Life Sci Space Res 14:289–294

    CAS  PubMed  Google Scholar 

  6. Shulzhenko E, Vil-Vilyams I (1976) The possibility to maintain a long term water immersion by using the method of dry immersion. Kosm Biol Aviakosm Med 10:82–84

    CAS  Google Scholar 

  7. Leach Huntoon C, Grigoriev A, Natochin Y (1998) Fluid and electrolyte regulation in spaceflight. Science and Technology Series 94. American Astronautical Society by Univelt, San Diego, CA, 219p

    Google Scholar 

  8. Lange L, Lange S, Echt M, Gauer OH (1974) Heart volume in relation to body posture and immersion in a thermo-neutral bath. A roentgenometric study. Pflugers Arch 352(3):219–226

    Article  CAS  PubMed  Google Scholar 

  9. Seibert G, Frittion B, Battrick B (2001) A world without gravity - Research in space for health and industrial process. ESA Special publication SP-1251

    Google Scholar 

  10. Norsk P, Gybel M, Petersen L (2000) Comparison of acute effects of water immersion and weightlessness on cardiac output in humans. http://www.dsls.usra.edu/meetings/howi/pdf/1029.pdf

  11. Fomin IO, Orlov VN, Radzevich AE, Leskin GS (1985) Effect of water immersion on indices of central hemodynamics in subjects older than 45 years. Kosm Biol Aviakosm Med 19(3):37–40

    CAS  PubMed  Google Scholar 

  12. Kirsch KA, Röcker L, Gauer OH, Krause R, Leach C, Wicke HJ, Landry R (1984) Venous pressure in man during weightlessness. Science 225(4658):218–219

    Article  CAS  PubMed  Google Scholar 

  13. Kramer HJ, Heer M, Cirillo M, De Santo NG (2001) Renal hemodynamics in space. Am J Kidney Dis 38(3):675–678

    Article  CAS  PubMed  Google Scholar 

  14. Epstein M (1992) Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev 72(3):563–621

    CAS  PubMed  Google Scholar 

  15. Drummer C, Norsk P, Heer M (2001) Water and sodium balance in space. Am J Kidney Dis 38(3):684–690

    Article  CAS  PubMed  Google Scholar 

  16. Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners LD et al (1996) Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 81(1):105–116

    CAS  PubMed  Google Scholar 

  17. Norsk P, Christensen NJ, Bie P, Gabrielsen A, Heer M, Drummer C (2000) Unexpected renal responses in space. Lancet 356(9241):1577–1578

    Article  CAS  PubMed  Google Scholar 

  18. Aubert AE, Pletser V, Beckers F, Verheyden B (2004) What happens to the human heart in space? Parabolic flights provide some answers. ESA Bull 119:29–38

    Google Scholar 

  19. Mukai CN, Lathers CM, Charles JB, Bennett BS, Igarashi M, Patel S (1991) Acute hemodynamic responses to weightlessness during parabolic flight. J Clin Pharmacol 31(10):993–1000

    Article  CAS  PubMed  Google Scholar 

  20. Gauer O, Haber H (1950) Man under gravity-free conditions. In: German aviation medicine in World War II. Office of the Surgeon General of the Air Force, Department of the Air Force, Washington DC, pp 641–644

    Google Scholar 

  21. Burton RR, Meeker LJ (1992) Physiologic validation of a short-arm centrifuge for space application. Aviat Space Environ Med 63(6):476–481

    CAS  PubMed  Google Scholar 

  22. Arvedsen SK, Eiken O, Kölegård R, Petersen LG, Norsk P, Damgaard M (2015) Body height and arterial pressure in seated and supine young males during +2 G centrifugation. Am J Physiol Regul Integr Comp Physiol 309(R):1172–1177

    Article  Google Scholar 

  23. Ueda K, Ogawa Y, Yanagida R, Aoki K, Iwasaki K-I (2015) Dose-Effect relationship between mild levels of hypergravity and autonomic circulatory regulation. Aerosp Med Hum Perform 86(6):535–540

    Article  PubMed  Google Scholar 

  24. Regnard J, Heer M, Drummer C, Norsk P (2001) Validity of microgravity simulation models on earth. Am J Kidney Dis 38(3):668–674

    Article  CAS  PubMed  Google Scholar 

  25. Macias BR, Liu JH, Grande-Gutierrez N, Hargens AR (2015) Intraocular and intracranial pressures during head-down tilt with lower body negative pressure. Aerosp Med Hum Perform 86(1):3–7

    Article  PubMed  Google Scholar 

  26. Zhang LF, Hargens AR (2014) Intraocular/intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat Space Environ Med 85(1):78–80

    Article  PubMed  Google Scholar 

  27. Christensen N, Drummer c, Norsk P (2001) Renal and sympathoadrenal responses in space. Am J Kidney Dis 38(3):679–683

    Article  CAS  PubMed  Google Scholar 

  28. Kirsch KA, Baartz FJ, Gunga HC, Röcker L (1993) Fluid shifts into and out of superficial tissues under microgravity and terrestrial conditions. Clin Investig 71(9):687–689

    Article  CAS  PubMed  Google Scholar 

  29. Bie P, Oser H, Agency ES (1996) Biological and medical research in space: an overview of life sciences research in microgravity. Springer, Berlin

    Google Scholar 

  30. Thornton WE, Hedge V, Coleman E, Uri JJ, Moore TP (1992) Changes in leg volume during microgravity simulation. Aviat Space Environ Med 63(9):789–794

    CAS  PubMed  Google Scholar 

  31. Prisk GK, Guy HJ, Elliott AR, Deutschman RA, West JB (1993) Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol 75(1):15–26

    CAS  PubMed  Google Scholar 

  32. Hargens AR, Watenpaugh DE (1996) Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc 28(8):977–982

    Article  CAS  PubMed  Google Scholar 

  33. Moore TP, Thornton WE (1987) Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med 58(9 Pt 2):A91–A96

    CAS  PubMed  Google Scholar 

  34. Dunn CDR, Johnson PC, Lange RD, Perez L, Nessel R (1985) Regulation of hematopoiesis in rats exposed to antiorthostatic, hypokinetic/hypodynamia. I. Model description. Aviat Space Environ Med 56:419–426

    CAS  PubMed  Google Scholar 

  35. Fritsch-Yelle JM, Charles JB, Jones MM, Wood ML (1996) Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol 80(3):910–914

    CAS  PubMed  Google Scholar 

  36. Karemaker JM, Berecki-Gisolf J (2009) 24-h blood pressure in space: the dark side of being an astronaut. Respir Physiol Neurobiol 169(Suppl 1):S55–S58

    Article  PubMed  Google Scholar 

  37. Norsk P, Asmar A, Damgaard M, Christensen NJ (2015) Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol 593(3):573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Di Rienzo M, Castiglioni P, Iellamo F, Volterrani M, Pagani M, Mancia G et al (2008) Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J Appl Physiol 105(5):1569–1575

    Article  PubMed  Google Scholar 

  39. Churchill SE (1997) Fundamentals of space life sciences. Krieger Publishing Company, Malabar, FL

    Google Scholar 

  40. Kirsch K, Haenel F, Röcker L (1986) Venous pressure in microgravity. Naturwissenschaften 73(7):447–449

    Article  CAS  PubMed  Google Scholar 

  41. Charles JB, Bungo M (1987) Non invasive estimation of central venous pressure using a Doppler ultrasound system. Johnson Space Center Houston, NASA TM-5820

    Google Scholar 

  42. Buckey JC, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ et al (1996) Central venous pressure in space. J Appl Physiol 81(1):19–25

    PubMed  Google Scholar 

  43. Foldager N, Andersen TA, Jessen FB, Ellegaard P, Stadeager C, Videbaek R, Norsk P (1996) Central venous pressure in humans during microgravity. J Appl Physiol 81(1):408–412

    CAS  PubMed  Google Scholar 

  44. Clément G (2005) Fundamental of space medicine (space technology library). Springer, Netherlands

    Google Scholar 

  45. Dunn CDR, Johnson PC, Lange (1986) Regulation of meatopoiesis in rats exposed to antiorthostaic, hypokinetic/hypodynamia. II. Mechanisms of the “anemia”. Aviat Space Environ Med 57:36–44

    CAS  PubMed  Google Scholar 

  46. Hoffler GW, Johnson RL, Nicogossian AE, Bergman SA, Jackson MM (1977) Vectorcardiographic results from skylab medical experiment M092: lower body negative pressure. Biomedical results from skylab. US Government Printing Office, Washington, DC, pp 313−323

    Google Scholar 

  47. Somody L, Fagette S, Frutoso J, Gharib C, Gauquelin G (1998) Recording heart rate and blood pressure in rats during parabolic flight. Life Sci 63(10):851–857

    Article  CAS  PubMed  Google Scholar 

  48. Gundel A, Drescher J, Spatenko YA, Polyakov VV (2002) Changes in basal heart rate in spaceflights up to 438 days. Aviat Space Environ Med 73(1):17–21

    PubMed  Google Scholar 

  49. McKeon J (2009) Principles of clinical medicine for space flight. JAMA 301(8):884–889

    Article  Google Scholar 

  50. Ertl AC, Diedrich A, Biaggioni I, Levine BD, Robertson RM, Cox JF et al (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538(1):321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johansen LB, Foldager N, Stadeager C, Kristensen MS, Bie P, Warberg J et al (1992) Plasma volume, fluid shifts, and renal responses in humans during 12 h of head-out water immersion. J Appl Physiol 73(2):539–544

    CAS  PubMed  Google Scholar 

  52. Sahm PR, Keller MH, Schiewe B (1993) Research in space: the German Spacelab missions. Wissenschaftliche Projektführung D-2, Köln, Germany

    Google Scholar 

  53. Gauer OH, Henry JP (1963) Circulatory basis of fluid volume control. Physiol Rev 43(3):423–481

    CAS  PubMed  Google Scholar 

  54. Cirillo M, De Santo NG, Heer M, Norsk P, Elmann-Larsen B, Bellini L et al (2003) Low urinary albumin excretion in astronauts during space missions. Nephron Physiol 93(4):p102–p105

    Article  CAS  PubMed  Google Scholar 

  55. Grigoriev AI, Kotovskaya AR, Fomina GA (2011) The human cardiovascular system during space flight. Acta Astronaut 68(9):1495–1500

    Article  Google Scholar 

  56. Hughson RL, Shoemaker JK, Blaber AP, Arbeille P, Greaves DK, Pereira-Junior PP, Xu D (2012) Cardiovascular regulation during long-duration spaceflights to the international space station. J Appl Physiol 112(5):719–727

    Article  CAS  PubMed  Google Scholar 

  57. Hamilton DR, Sargsyan AE, Martin DS, Garcia KM, Melton SL, Feiveson A, Dulchavsky SA (2011) On-orbit prospective echocardiography on international space station crew. Echocardiography 28(5):491–501

    Article  PubMed  Google Scholar 

  58. Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P (2000) Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol 81(5):384–390

    Article  CAS  PubMed  Google Scholar 

  59. Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10):2058–2069

    Article  PubMed  Google Scholar 

  60. Coupé M, Fortrat JO, Larina I, Gauquelin-Koch G, Gharib C, Custaud MA (2009) Cardiovascular deconditioning: from autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol 169(Suppl 1):S10–S12

    Article  PubMed  Google Scholar 

  61. Aubert AE, Beckers F, Verheyden B (2005) Cardiovascular function and basics of physiology in microgravity. Acta Cardiol 60(2):129–151

    Article  PubMed  Google Scholar 

  62. Moore D, Bie P, Oser H (1996) Biological and medical research in space: an overview of life sciences research in microgravity. Springer, Berlin

    Book  Google Scholar 

  63. Bungo MW, Goldwater DJ, Popp RL, Sandler H (1987) Echocardiographic evaluation of space shuttle crewmembers. J Appl Physiol 62(1):278–283

    CAS  PubMed  Google Scholar 

  64. Frey MA (1996) Space research activities during missions of the past. Med Sci Sports Exerc 28(10 Suppl):S3–S8

    Article  CAS  PubMed  Google Scholar 

  65. Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81(2):686–694

    CAS  PubMed  Google Scholar 

  66. Rummel JA, Michel EL, Sawin CF, Buderer MC (1976) Medical experiment M-171: results from the second manned skylab mission. Aviat Space Environ Med 47(10):1056–1060

    CAS  PubMed  Google Scholar 

  67. Tank J, Baevsky RM, Funtova II, Diedrich A, Slepchenkova IN, Jordan J (2011) Orthostatic heart rate responses after prolonged space flights. Clin Auton Res 21(2):121–124

    Article  PubMed  Google Scholar 

  68. Watenpaugh DE, Hargens AR (1996) The cardiovascular system in microgravity. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, Section 4: Environmental physiology, vol I. Oxford University Press, Oxford, pp 631–674

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Gunga, HC., Ahlefeld, V.W.v., Appell Coriolano, HJ., Werner, A., Hoffmann, U. (2016). The Cardiovascular System in Space. In: Cardiovascular System, Red Blood Cells, and Oxygen Transport in Microgravity. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-33226-0_2

Download citation

Publish with us

Policies and ethics