Skip to main content

Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities

  • Conference paper
  • First Online:
  • 173 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 57))

Abstract

Identifying movement abnormalities from raw Electromyography (EMG) data requires three steps that are the data pre-processing, the feature extraction and training a classifier. As EMG data shows large variation (even for consecutive trials in a single subject) probabilistic classifiers like naive Bayes or probabilistic support vector machines have been proposed. The used feature representations (e.g., principal components analysis, non negative matrix factorization, wavelet transformation) however, can not capture the variation. Here, we propose a fully Bayesian approach where both, the features and the classifier, are probabilistic models. The generative model reproduces the observed variance in the EMG data, provides an estimate of the reliability of the predictions and can be applied in combination with dimensionality reduction techniques such as PCA and NMF. In first tests, we found that these probabilistic extensions outperforms classical approaches in terms of the prediction of knee abnormalities from few samples with a performance of 86 percent of correctly classified abnormalities.

The original version of this chapter was inadvertently published with an incorrect chapter pagination 662–666 and DOI 10.1007/978-3-319-32703-7_128. The page range and the DOI has been re-assigned. The correct page range is 668–672 and the DOI is 10.1007/978-3-319-32703-7_129. The erratum to this chapter is available at DOI: 10.1007/978-3-319-32703-7_260

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-32703-7_260

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Konrad, “The abc of emg,” A practical introduction to kinesiological electromyography, vol. 1, 2005.

    Google Scholar 

  2. J. E. Duggan and G. B. Drummond, “Abdominal muscle activity and intraabdominal pressure after upper abdominal surgery.” Anesthesia & Analgesia, vol. 69, no. 5, pp. 598–603, 1989.

    Google Scholar 

  3. N. F. Güler and S. Koçer, “Use of support vector machines and neural network in diagnosis of neuromuscular disorders,” Journal of medical systems, vol. 29, no. 3, pp. 271–284, 2005.

    Google Scholar 

  4. C. Castellini and P. van der Smagt, “Surface emg in advanced hand prosthetics,” Biological cybernetics, vol. 100, no. 1, pp. 35–47, 2009.

    Google Scholar 

  5. D. M. Rittenhouse, H. A. Abdullah, R. J. Runciman, and O. Basir, “A neural network model for reconstructing emg signals from eight shoulder muscles: Consequences for rehabilitation robotics and biofeedback,” Journal of biomechanics, vol. 39, no. 10, pp. 1924–1932, 2006.

    Google Scholar 

  6. D.-p. Yang, J.-d. Zhao, Y.-k. Gu, X.-q. Wang, N. Li, L. Jiang, H. Liu, H. Huang, and D.-w. Zhao, “An anthropomorphic robot hand developed based on underactuated mechanism and controlled by emg signals,” Journal of Bionic Engineering, vol. 6, no. 3, pp. 255–263, 2009.

    Google Scholar 

  7. S. Bitzer and P. van der Smagt, “Learning emg control of a robotic hand: towards active prostheses,” in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on.   IEEE, 2006, pp. 2819–2823.

    Google Scholar 

  8. J. L. McKay and L. H. Ting, “Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts,” PLoS Comput. Biol, vol. 8, no. 4, p. e1002465, 2012.

    Google Scholar 

  9. Z. O. Khokhar, Z. G. Xiao, C. Menon et al., “Surface emg pattern recognition for real-time control of a wrist exoskeleton,” Biomedical engineering online, vol. 9, no. 1, p. 41, 2010.

    Google Scholar 

  10. M. Bland et al., An introduction to medical statistics.   Oxford University Press, 2000, no. Ed. 3.

    Google Scholar 

  11. A. Hiraiwa, K. Shimohara, and Y. Tokunaga, “Emg pattern analysis and classification by neural network,” in Systems, Man and Cybernetics, 1989. Conference Proceedings., IEEE International Conference on.   IEEE, 1989, pp. 1113–1115.

    Google Scholar 

  12. C. Christodoulou, C. S. Pattichis et al., “Unsupervised pattern recognition for the classification of emg signals,” Biomedical Engineering, IEEE Transactions on, vol. 46, no. 2, pp. 169–178, 1999.

    Google Scholar 

  13. G. Wang, Z. Wang, W. Chen, and J. Zhuang, “Classification of surface emg signals using optimal wavelet packet method based on davies-bouldin criterion,” Medical and Biological Engineering and Computing, vol. 44, no. 10, pp. 865–872, 2006.

    Google Scholar 

  14. S. S. Nair, R. M. French, D. Laroche, and E. Thomas, “The application of machine learning algorithms to the analysis of electromyographic patterns from arthritic patients,” Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 18, no. 2, pp. 174–184, 2010.

    Google Scholar 

  15. A. Subasi, “Classification of emg signals using pso optimized svm for diagnosis of neuromuscular disorders,” Computers in biology and medicine, vol. 43, no. 5, pp. 576–586, 2013.

    Google Scholar 

  16. M. Reaz, M. Hussain, and F. Mohd-Yasin, “Techniques of emg signal analysis: detection, processing, classification and applications,” Biological procedures online, vol. 8, no. 1, pp. 11–35, 2006.

    Google Scholar 

  17. M. C. Tresch, V. C. Cheung, and A. d’Avella, “Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets,” Journal of Neurophysiology, vol. 95, no. 4, pp. 2199–2212, 2006.

    Google Scholar 

  18. I. Daubechies et al., Ten lectures on wavelets.   SIAM, 1992, vol. 61.

    Google Scholar 

  19. A. D. Chan and K. B. Englehart, “Continuous myoelectric control for powered prostheses using hidden markov models,” Biomedical Engineering, IEEE Transactions on, vol. 52, no. 1, pp. 121–124, 2005.

    Google Scholar 

  20. E. Benetos, M. Kotti, and C. Kotropoulos, “Musical instrument classification using non-negative matrix factorization algorithms,” in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on.   IEEE, 2006.

    Google Scholar 

  21. A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic movement primitives,” in Advances in Neural Information Processing Systems (NIPS), Cambridge, MA: MIT Press., 2013. [Online]. Available: http://www.ias.tu-darmstadt.de/uploads/Publications/Paraschos_NIPS_2013.pdf

  22. E. Rueckert and A. d’Avella, “Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems,” Frontiers in computational neuroscience, vol. 7, 2013.

    Google Scholar 

  23. E. Rueckert, J. Mundo, A. Paraschos, J. Peters, and G. Neumann, “Extracting low-dimensional control variables for movement primitives,” in Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.

    Google Scholar 

  24. Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Five basic muscle activation patterns account for muscle activity during human locomotion,” The Journal of physiology, vol. 556, no. 1, pp. 267–282, 2004.

    Google Scholar 

  25. A. d’Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle synergies in the construction of a natural motor behavior,” Nature neuroscience, vol. 6, no. 3, pp. 300–308, 2003.

    Google Scholar 

  26. M. Lichman, “UCI machine learning repository,” http://archive.ics.uci.edu/ml/datasets/EMG+dataset+in+Lower+Limb, 2013.

  27. D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series.” in KDD workshop, vol. 10, no. 16.   Seattle, WA, 1994, pp. 359–370.

    Google Scholar 

  28. H. Huang, T. Kuiken, R. D. Lipschutz et al., “A strategy for identifying locomotion modes using surface electromyography,” Biomedical Engineering, IEEE Transactions on, vol. 56, no. 1, pp. 65–73, 2009.

    Google Scholar 

  29. A. H. Al-Timemy, G. Bugmann, J. Escudero, and N. Outram, “Classification of finger movements for the dexterous hand prosthesis control with surface electromyography,” Biomedical and Health Informatics, IEEE Journal of, vol. 17, no. 3, pp. 608–618, 2013.

    Google Scholar 

  30. C. M. Bishop, Pattern recognition and machine learning.   springer, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kohlschuetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kohlschuetter, J., Peters, J., Rueckert, E. (2016). Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities. In: Kyriacou, E., Christofides, S., Pattichis, C. (eds) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IFMBE Proceedings, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-32703-7_129

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32703-7_129

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32701-3

  • Online ISBN: 978-3-319-32703-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics