Skip to main content

Modeling and Control of Legged Robots

  • Chapter
  • First Online:
Book cover Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The promise of legged robots over wheeled robots is to provide improved mobility over rough terrain. Unfortunately, this promise comes at the cost of a significant increase in complexity. We now have a good understanding of how to make legged robots walk and run dynamically, but further research is still necessary to make them walk and run efficiently in terms of energy, speed, reactivity, versatility, and robustness. In this chapter, we will discuss how legged robots are usually modeled, how their stability analysis is approached, how dynamic motions are generated and controlled, and finally summarize the current trends in trying to improve their performance. The main problem is avoiding to fall. This can prove difficult since legged robots have to rely entirely on available contact forces to do so. The temporality of leg motions appears to be a key aspect in this respect, as current control solutions include continuous anticipation of future motion (using some form of model predictive control), or focusing more specifically on limit cycles and orbital stability.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

CMU:

Carnegie Mellon University

COM:

center of mass

COP:

center of pressure

CP:

capture point

CPG:

central pattern generator

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

FRI:

foot rotation indicator

KAIST:

Korea Advanced Institute of Science and Technology

LCP:

linear complementarity problem

LP:

linear program

LQR:

linear quadratic regulator

MIT:

Massachusetts Institute of Technology

MPC:

model predictive control

ODE:

ordinary differential equation

ODI:

ordinary differential inclusion

PD:

proportional–derivative

QP:

quadratic programming

XCOM:

extrapolated center of mass

ZMP:

zero moment point

References

  1. K.J. Waldron, R.B. McGhee: The adaptive suspension vehicle, IEEE Control Syst. Mag. 6, 7–12 (1986)

    Article  Google Scholar 

  2. K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka: The development of honda humanoid robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 1321–1326

    Google Scholar 

  3. H. Lim, A. Takanishi: Biped walking robots created at waseda university: WL and WABIAN family, Philos. Trans. Royal Soc. A 365(1850), 49–64 (2007)

    Article  Google Scholar 

  4. H. Miura, I. Shimoyama: Dynamic walk of a biped, Int. J.Robotics Res. 3(2), 60–74 (1984)

    Article  Google Scholar 

  5. M. Raibert: Legged Robots that Balance (MIT Press, Cambridge 1986)

    Book  MATH  Google Scholar 

  6. T. McGeer: Passive Dynamic Walking, Simon Fraser University Tech. Rep., (Simon Fraser Univ., Burnaby 1988)

    Google Scholar 

  7. M. Raibert, K. Blankespoor, G. Nelson, R. Playter, the BigDog Team: BigDog, the rough-terrain quadruped robot, Proc. 17th World Cong. Int. Fed. Autom. Control. (2008)

    Google Scholar 

  8. P.-B. Wieber: Holonomy and nonholonomy in the dynamics of articulated motion, Proc. Ruperto Carola Symp. Fast Motion Biomech. Robotics (2005)

    Google Scholar 

  9. R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)

    MATH  Google Scholar 

  10. M.K. Vukobratović: Contribution to the study of anthropomorphic systems, Kybernetika 8(5), 404–418 (1972)

    MATH  Google Scholar 

  11. P. Sardain, G. Bessonnet: Forces acting on a biped robot. center of pressure—zero moment point, IEEE Trans.Syst. Man. Cybern. A 34(5), 630–637 (2004)

    Article  Google Scholar 

  12. K. Harada, S. Kajita, K. Kaneko, H. Hirukawa: ZMP analysis for arm/leg coordination, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2003) pp. 75–81

    Google Scholar 

  13. K. Harada, H. Hirukawa, F. Kanehiro, K. Fujiwara, K. Kaneko, S. Kajita, M. Nakamura: Dynamical balance of a humanoid robot grasping an environment, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2004) pp. 1167–1173

    Google Scholar 

  14. Y. Or, E. Rimon: Analytic characterization of a class of 3-contact frictional equilibrium postures in 3D gravitational environments, Int. J.Robotics Res. 29(1), 3–22 (2010)

    Article  Google Scholar 

  15. P.-B. Wieber: On the stability of walking systems, Proc. Int. WorkshopHumanoidsHum. Friendly Robots (2002)

    Google Scholar 

  16. T. Saida, Y. Yokokoji, T. Yoshikawa: FSW (feasible solution of wrench) for multi-legged robots, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2003)

    Google Scholar 

  17. H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa: A universal stability criterion of the foot contact of legged robots -- adios ZMP, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2006) pp. 1976–1983

    Google Scholar 

  18. T. Bretl, S. Lall: Testing static equilibrium for legged robots, IEEE Trans. Robotics 24(4), 794–807 (2008)

    Article  Google Scholar 

  19. S. Barthélemy, P. Bidaud: Stability measure of postural dynamic equilibrium based on residual radius, Proc. Int. Symp.Adv.Robot Kinemat. (2008)

    Google Scholar 

  20. Z. Qiu, A. Escande, A. Micaelli, T. Robert: Human motions analysis and simulation based on a general criterion of stability, Proc. Int. Symp.Digit. Hum. Model. (2011)

    Google Scholar 

  21. Z. Qiu, A. Escande, A. Micaelli, T. Robert: A hierarchical framework for realizing dynamically-stable motions of humanoid robot in obstacle-cluttered environments, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2012)

    Google Scholar 

  22. E. Rimon, R. Mason, J.W. Burdick, Y. Or: A general stance stability test based on stratified morse theory with application to quasi-static locomotion planning, IEEE Trans.Robotics 24(3), 626–641 (2008)

    Article  Google Scholar 

  23. Q. Huang, S. Sugano, K. Tanie: Stability compensation of a mobile manipulator by manipulator motion: Feasibility and planning, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (1997) pp. 1285–1292

    Google Scholar 

  24. J. Kim, W.K. Chung, Y. Youm, B.H. Lee: Real-time ZMP compensation method using null motion for mobile manipulators, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2002) pp. 1967–1972

    Google Scholar 

  25. B. Brogliato: Nonsmooth Mechanics, Communications and Control Engineering (Springer, London 1999)

    Book  MATH  Google Scholar 

  26. F. Pfeiffer, C. Glocker: Multibody Dynamics with Unilateral Contacts (Wiley, New York 1996)

    Book  MATH  Google Scholar 

  27. S. Chareyron, P.-B. Wieber: Stability and Regulation of Nonsmooth Dynamical Systems INRIA Res. Rep. RR-5408 (INRIA, Montbonnot Saint-Ismier2004)

    Google Scholar 

  28. C. Liu, Z. Zhao, B. Brogliato: Frictionless multiple impacts in multibody systems. I. Theoretical framework, Proc. R. Soc. A 464, 3193–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y.-B. Jia, M. Mason, M. Erdmann: Multiple impacts: A state transition diagram approach, Int. J. Robotics Res. 32(1), 84–114 (2013)

    Article  Google Scholar 

  30. J.-M. Bourgeot, C. Canudas de Wit, B. Brogliato: Impact shaping for double support walk: From the rocking block to the biped robot, Proc. Int. Conf.Climb.Walk. Robots (2005)

    Google Scholar 

  31. B. Gamus, Y. Or: Analysis of dynamic bipedal robot locomotion with stick-slip transitions, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 3348–3355

    Google Scholar 

  32. S. Kajita, K. Miura, M. Morisawa, K. Kaneko, F. Kanehiro, K. Yokoi: Evaluation of a stabilizer for biped walk with toe support phase, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2012)

    Google Scholar 

  33. V. Acary, B. Brogliato: Numerical Methods for Nonsmooth Dynamical Systems, Lect. Notes Appl. Comput. Mech., Vol. 35 (Springer, Berlin, Heidelberg 2008)

    Book  MATH  Google Scholar 

  34. R.I. Leine, N. van de Wouw: Stability and Convergence of Mechanical Systems with Unilateral Constraints, Lect. Notes Appl. Comput. Mech., Vol. 36 (Springer, Berlin, Heidelberg 2008)

    Book  MATH  Google Scholar 

  35. Y. Or, A.D. Ames: Stability and completion of zeno equilibria in lagrangian hybrid systems, IEEE Trans.Autom. Control 56(6), 1322–1336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. D.E. Stewart, J.C. Trinkle: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction, Int. J.Numer. MethodsEng. 39(15), 2673–2691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Posa, C. Cantu, R. Tedrake: A direct method for trajectory optimization of rigid bodies through contact, Int. J.Robotics Res. 33(1), 69–81 (2014)

    Article  Google Scholar 

  38. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, B. Morris: Feedback Control of Dynamic Bipedal Robot Locomotion (CRC, Boca Raton 2007)

    Google Scholar 

  39. M. Wisse: Essentials of Dynamic Walking: Analysis and Design of Two-Legged Robots, Dissertation (Technische Universiteit, Delft 2004)

    Google Scholar 

  40. R. Tedrake, I.R. Manchester, M.M. Tobenkin, J.W. Roberts: LQR-Trees: Feedback motion planning via sums of squares verification, Int. J.Robotics Res. 29, 1038–1052 (2010)

    Article  Google Scholar 

  41. M. Posa, M. Tobenkin, R. Tedrake: Lyapunov analysis of rigid body systems with impacts and friction via sums-of-squares, Proc. Int. Conf.Hybrid Syst. Comput.Control (2013) pp. 63–72

    Google Scholar 

  42. S. Cotton, I. Olaru, M. Bellman, T. van der Ven, J. Godowski, J. Pratt: Fastrunner: A fast, efficient and robust bipedal robot. concept and planar simulation, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2012)

    Google Scholar 

  43. M. Srinivasan, A. Ruina: Computer optimization of a minimal biped model discovers walking and running, Nature 439, 72–75 (2006)

    Article  Google Scholar 

  44. K. Mombaur, H.G. Bock, J.P. Schloder, R.W. Longman: Open-loop stable solutions of periodic optimal control problems in robotics, Z. Angew. Math. Mech. 85(7), 499–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Hauser, C.C. Chung: Converse Lyapunov functions for exponentially stable periodic orbits, Syst.Control Lett. 23(1), 27–34 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, Heidelberg 1983)

    Book  MATH  Google Scholar 

  47. I.R. Manchester, M.M. Tobenkin, M. Levashov, R. Tedrake: Regions of attraction for hybrid limit cycles of walking robots, Proc. 21st World Cong. Int. Fed. Autom. Control (2011)

    Google Scholar 

  48. E.R. Westervelt, G. Buche, J.W. Grizzle: Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds, Int. J.Robotics Res. 23(6), 559–582 (2004)

    Article  Google Scholar 

  49. A.S. Shiriaev, L.B. Freidovich, I.R. Manchester: Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems, Annu. Rev.Control 32(2), 200–211 (2008)

    Article  Google Scholar 

  50. I.R. Manchester, U. Mettin, F. Iida, R. Tedrake: Stable dynamic walking over uneven terrain, Int. J.Robotics Res. 30(3), 265–279 (2011)

    Article  MATH  Google Scholar 

  51. J.-P. Aubin: Viability Theory (Birkhäuser, Basel 1991)

    MATH  Google Scholar 

  52. P.-B. Wieber: Constrained dynamics and parametrized control in biped walking, Proc. Int. Symp.Math. TheoryNetworksSyst. (2000)

    Google Scholar 

  53. P.-B. Wieber: Viability and predictive control for safe locomotion, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2008)

    Google Scholar 

  54. K. Ogata: Modern Control Engineering, 3rd edn. (Prentice Hall, Upper Saddle River 1996)

    MATH  Google Scholar 

  55. J. Pratt, R. Tedrake: Velocity based stability margins for fast bipedal walking, Proc. Ruperto Carola Symp.Fast MotionBiomech.Robotics (2005)

    Google Scholar 

  56. A.L. Hof, M.G.J. Gazendam, W.E. Sinke: The condition for dynamic stability, J.Biomech. 38, 1–8 (2005)

    Article  Google Scholar 

  57. J. Pratt, J. Carff, S. Drakunov, A. Goswami: Capture point: A step toward humanoid push recovery, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2006)

    Google Scholar 

  58. T. Takenaka, T. Matsumoto, T. Yoshiike: Real time motion generation and control for biped robot -- 1st report: Walking gait pattern generation, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2009)

    Google Scholar 

  59. J. Englsberger, C. Ott, M.A. Roa, A. Albu-Schäffer, G. Hirzinger: Bipedal walking control based on capture point dynamics, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2011)

    Google Scholar 

  60. T. Koolen, T. de Boer, J. Rebula, A. Goswami, J. Pratt: Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models, Int. J.Robotics Res. 31(9), 1094–1113 (2012)

    Article  Google Scholar 

  61. A. Papachristodoulou, S. Prajna: Robust stability analysis of nonlinear hybrid systems, IEEE Trans.Autom. Control 54(5), 1035–1041 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Hanggi, P. Talkner, M. Borkovec: Reaction-rate theory: Fifty years after Kramers, Rev.Mod. Phys. 62(2), 251–342 (1990)

    Article  MathSciNet  Google Scholar 

  63. K. Byl: Metastable Legged-Robot Locomotion, Dissertation (MIT, Cambridge 2008)

    Google Scholar 

  64. J. Steinhardt, R. Tedrake: Finite-time regional verification of stochastic nonlinear systems, Int. J.Robotics Res. 31(7), 901–923 (2012)

    Article  Google Scholar 

  65. D.G.E. Hobbelen, M. Wisse: A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm, IEEE Trans.Robotics 23(6), 1213–1224 (2007)

    Article  Google Scholar 

  66. C. Ebenbauer: Polynomial Control Systems: Analysis and Design via Dissipation Inequalities and Sum of Squares, Dissertation (Univ. Stuttgart, Stuttgart 2005)

    Google Scholar 

  67. H. Dai, R. Tedrake: L2-gain optimization for robust bipedal walking on unknown terrain, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2013)

    Google Scholar 

  68. E. Garcia, J. Estremera, P. Gonzalez de Santos: A classification of stability margins for walking robots, Proc. Int. Conf.Climb.Walk. Robots (2002)

    Google Scholar 

  69. A. Goswami: Postural stability of biped robots and the foot rotation indicator (FRI) point, Int. J.Robotics Res. 18(6), 523–533 (1999)

    Article  Google Scholar 

  70. C.K. Chow, D.H. Jacobson: Studies of human locomotion via optimal programming, Tech. Rep. No. 617 (Harvard Univ., Cambridge 1970)

    Book  MATH  Google Scholar 

  71. P.H. Channon, S.H. Hopkins, D.T. Phan: Derivation of optimal walking motions for a biped walking robot, Robotica 10(2), 165–172 (1992)

    Article  Google Scholar 

  72. G. Cabodevilla, N. Chaillet, G. Abba: Energy-minimized gait for a biped robot, Proc.Auton. Mob. Syst. (1995)

    Google Scholar 

  73. C. Chevallereau, A. Formal'sky, B. Perrin: Low energy cost reference trajectories for a biped robot, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (1998)

    Google Scholar 

  74. M. Rostami, G. Bessonnet: Impactless sagittal gait of a biped robot during the single support phase, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (1998)

    Google Scholar 

  75. L. Roussel, C. Canudas de Wit, A. Goswami: Generation of energy optimal complete gait cycles for biped robots, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (1998)

    Google Scholar 

  76. J. Denk, G. Schmidt: Synthesis of a walking primitive database for a humanoid robot using optimal control techniques, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2001)

    Google Scholar 

  77. T. Buschmann, S. Lohmeier, H. Ulbrich, F. Pfeiffer: Optimization based gait pattern generation for a biped robot, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2005)

    Google Scholar 

  78. K. Mombaur: Using optimization to create self-stable human-like running, Robotica 27(3), 321–330 (2009)

    Article  Google Scholar 

  79. J. Denk, G. Schmidt: Synthesis of walking primitive databases for biped robots in 3D-environments, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2003)

    Google Scholar 

  80. S.A. Setiawan, S.H. Hyon, J. Yamaguchi, A. Takanishi: Quasi real-time walking control of a bipedal humanoid robot based on walking pattern synthesis, Proc. Int. Symp.Exp. Robotics (1999)

    Google Scholar 

  81. P.-B. Wieber, C. Chevallereau: Online adaptation of reference trajectories for the control of walking systems, RoboticsAuton. Syst. 54(7), 559–566 (2006)

    Article  Google Scholar 

  82. C. Liu, C.G. Atkeson: Standing balance control using a trajectory library, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2009) pp. 3031–3036

    Google Scholar 

  83. J. Yamaguchi, A. Takanishi, I. Kato: Development of biped walking robot compensating for three-axis moment by trunk motion, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (1993)

    Google Scholar 

  84. Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie: Planning walking patterns for a biped robot, IEEE Trans.RoboticsAutom. 17(3), 280–289 (2001)

    Google Scholar 

  85. P.-B. Wieber: Trajectory free linear model predictive control for stable walking in the presence of strong perturbations, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2006)

    Google Scholar 

  86. T. de Boer: Foot placement in robotic bipedal locomotion, Dissertation (Technische Univ. Delft, Dleft 2012)

    Google Scholar 

  87. R.J. Full, D.E. Koditschek: Templates and anchors: Neuromechanical hypotheses of legged locomotion on land, J.Exp. Biol. 202, 3325–3332 (1999)

    Article  Google Scholar 

  88. R.M. Alexander: Mechanics of bipedal locomotion, Persp. Exp. Biol. 1, 493–504 (1976)

    Google Scholar 

  89. R.M. Alexander: Simple models of human movement, ASME Appl. Mech. Rev. 48(8), 461–470 (1995)

    Article  Google Scholar 

  90. S.S. Keerthi, E.G. Gilbert: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations, J.Optim. TheoryAppl. 57(2), 265–293 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  91. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert: Constrained model predictive control: Stability and optimality, Automatica 26(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  92. M. Alamir, N. Marchand: Numerical stabilisation of non-linear systems: Exact theory and approximate numerical implementation, Eur. J.Control 5(1), 87–97 (1999)

    Article  MATH  Google Scholar 

  93. M. Alamir, G. Bornard: Stability of a truncated infinite constrained receding horizon scheme: The general discrete nonlinear case, Automatica 31(9), 1353–1356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  94. A. Takanishi, M. Tochizawa, H. Karaki, I. Kato: Dynamic biped walking stabilized with optimal trunk and waist motion, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (1989)

    Google Scholar 

  95. H. Lim, Y. Kaneshima, A. Takanishi: Online walking pattern generation for biped humanoid robot with trunk, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2002)

    Google Scholar 

  96. T. Buschmann, S. Lohmeier, M. Bachmayer, H. Ulbrich, F. Pfeiffer: A collocation method for real-time walking pattern generation, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2007)

    Google Scholar 

  97. K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue: Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2002)

    Google Scholar 

  98. R. Tajima, D. Honda, K. Suga: Fast running experiments involving a humanoid robot, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2009)

    Google Scholar 

  99. K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, J. Yamaguchi: Integrated motion control for walking, jumping and running on a small bipedal entertainment robot, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2004)

    Google Scholar 

  100. M. Morisawa, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, S. Nakaoka, H. Hirukawa: A biped pattern generation allowing immediate modification of foot placement in real-time, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2006)

    Google Scholar 

  101. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa: Biped walking pattern generation by using preview control of zero moment point, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2003) pp. 1620–1626

    Google Scholar 

  102. K. Nishiwaki, S. Kagami: Online walking control systems for humanoids with short cycle pattern generation, Int. J.Robotics Res. 28(6), 729–742 (2009)

    Article  Google Scholar 

  103. J. Park, Y. Youm: General ZMP preview control for bipedal walking, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2007)

    Google Scholar 

  104. D. Gouaillier, C. Collette, C. Kilner: Omni-directional closed-loop walk for NAO, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2010)

    Google Scholar 

  105. M. Krause, J. Englsberger, P.-B. Wieber, C. Ott: Stabilization of the capture point dynamics for bipedal walking based on model predictive control, Proc. IFAC Symp.Robot Control (2012)

    Google Scholar 

  106. M. van de Panne: From footprints to animation, Comput. Graph. 16(4), 211–223 (1997)

    Google Scholar 

  107. A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl: Online walking motion generation with automatic foot step placement, Adv. Robotics 24(5-6), 719–737 (2010)

    Article  Google Scholar 

  108. A. Herdt, N. Perrin, P.-B. Wieber: LMPC based online generation of more efficient walking motions, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2012)

    Google Scholar 

  109. Z. Aftab, T. Robert, P.-B. Wieber: Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2012)

    Google Scholar 

  110. J. Urata, K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami, M. Inaba: Online decision of foot placement using singular LQ preview regulation, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2011)

    Google Scholar 

  111. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue: Dynamically-stable motion planning for humanoid robots, Auton. Robots 12, 105–118 (2002)

    Article  MATH  Google Scholar 

  112. S. Dalibard, A. El Khoury, F. Lamiraux, M. Taix, J.-P. Laumond: Small-space controllability of a walking humanoid robot, Proc. IEEE-RAS Int. Conf. Humanoid Robots (2011)

    Google Scholar 

  113. K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi: Humanoid robot HRP-2, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2004) pp. 1083–1090

    Google Scholar 

  114. E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi, K. Yokoi: Planning 3-D collision-free dynamic robotic motion through iterative reshaping, IEEE Trans.Robotics 24(5), 1186–1198 (2008)

    Article  Google Scholar 

  115. J.-D. Boissonnat, O. Devillers, S. Lazard: Motion planning of legged robots, SIAM J.Comput. 30(1), 218–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  116. N. Perrin, O. Stasse, F. Lamiraux, E. Yoshida: Weakly collision-free paths for continuous humanoid footstep planning, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2011)

    Google Scholar 

  117. N. Perrin: From discrete to continuous motion planning, Proc. Int. Workshop Algorithm. Found.Robotics (2012)

    Google Scholar 

  118. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue: Online footstep planning for humanoid robots, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2003)

    Google Scholar 

  119. J. Chestnutt, J. Kuffner: A tiered planning strategy for biped navigation, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2004)

    Google Scholar 

  120. P. Michel, J. Chestnutt, J. Kuffner, T. Kanade: Vision-Guided Humanoid Footstep Planning for Dynamic Environments. In: Proc. IEEE/RAS Int. Conf. Humanoid Robots 2005)

    Google Scholar 

  121. J. Chestnutt, P. Michel, J. Kuffner, T. Kanade: Locomotion among dynamic obstacles for the honda asimo, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2007)

    Google Scholar 

  122. J.-M. Bourgeot, N. Cislo, B. Espiau: Path-planning and tracking in a 3D complex environment for an anthropomorphic biped robot, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2002)

    Google Scholar 

  123. J. Chestnutt, J. Kuffner, K. Nishiwaki, S. Kagami: Planning biped navigation strategies in complex environments, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2003)

    Google Scholar 

  124. M. Zucker, J.A. Bagnell, C. Atkeson, J. Kuffner: An optimization approach to rough terrain locomotion, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2010)

    Google Scholar 

  125. J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, S. Kagami: Biped navigation in rough environments using on-board sensing, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2009)

    Google Scholar 

  126. N. Perrin, O. Stasse, F. Lamiraux, Y. Kim, D. Manocha: Real-time footstep planning for humanoid robots among 3D obstacles using a hybrid bounding box, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2012)

    Google Scholar 

  127. N. Perrin, O. Stasse, L. Baudoin, F. Lamiraux, E. Yoshida: Fast humanoid robot collision-free footstep planning using swept volume approximations, IEEE Trans.Robotics 28(2), 427–439 (2012)

    Article  Google Scholar 

  128. R.L.H. Deits, R. Tedrake: Computing large convex regions of obstacle-free space through semidefinite programming, Proc. Int. Workshop Algorithmic Found.Robotics (2014)

    Google Scholar 

  129. T. Bretl, S. Lall, J.-C. Latombe, S. Rock: Multi-step motion planning for free-climbing robots, Proc. Int. Workshop Algorithmic Found.Robotics (2004)

    Google Scholar 

  130. K. Hauser, T. Bretl, J.-C. Latombe: Non-gaited humanoid locomotion planning, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2005)

    Google Scholar 

  131. K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, B. Wilcox: Motion planning for legged robots on varied terrain, Int. J. Robotics Res. 27(11/12), 1325–1349 (2008)

    Article  Google Scholar 

  132. A. Escande, A. Kheddar, S. Miossec: Planning support contact-points for humanoid robots and experiments on HRP-2, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2006)

    Google Scholar 

  133. A. Escande, A. Kheddar, S. Miossec, S. Garsault: Planning support contact-points for acyclic motions and experiments on HRP-2, Proc. Int. Symp.Exp. Robotics (2008)

    Google Scholar 

  134. K. Bouyarmane, J. Vaillant, F. Keith, A. Kheddar: Exploring humanoid robots locomotion capabilities in virtual disaster response scenarios, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2012)

    Google Scholar 

  135. S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar: Generation of whole-body optimal dynamic multi-contact motions, Int. J. Robotics Res. 32(9/10), 1104–1119 (2013)

    Article  Google Scholar 

  136. K. Harada, E. Yoshida, K. Yokoi: Motion Planning for Humanoid Robots (Springer, Berlin, Heidelberg 2010)

    Book  MATH  Google Scholar 

  137. R.B. McGhee, A.A. Frank: On the stability properties of quadruped creeping gaits, Math. Biosci. 3, 331–351 (1968)

    Article  MATH  Google Scholar 

  138. G.C. Haynes, A.A. Rizzi: Gaits and gait transitions for legged robots, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2006) pp. 1117–1122

    Google Scholar 

  139. Y. Fujimoto, A. Kawamura: Proposal of biped walking control based on robust hybrid position/force control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Minneap. (1996) pp. 2724–2730

    Google Scholar 

  140. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, H. Hirukawa: A realtime pattern generator for biped walking, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2002) pp. 31–37

    Google Scholar 

  141. K. Yin, K. Loken, M. van de Panne: SIMBICON: Simple Biped Locomotion Control, Proc. ACM SIGGRAPH (2007)

    Google Scholar 

  142. I.-W. Park, J.-Y. Kim, J.-H. Oh: Online biped walking pattern generation for humanoid robot KHR-3(KAIST humanoid robot – 3: HUBO), Proc. IEEE-RAS Int. Conf.Humanoid Robots (2006)

    Google Scholar 

  143. A. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen: From swimming to walking with a salamander robot driven by a spinal cord model, Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  144. R. Katoh, M. Mori: Control method of biped locomotion giving asymptotic stability of trajectory, Automatica 20(4), 405–414 (1984)

    Article  MATH  Google Scholar 

  145. L. Righetti, A. Ijspeert: Programmable central pattern generators: An application to biped locomotion control, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2006)

    Google Scholar 

  146. K. Matsuoka: Sustained oscillations generated by mutually inhibiting neurons with adaptation, Biol. Cybern. 52, 367–376 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  147. G. Endo, J. Morimoto, J. Nakanishi, G. Cheng: An empirical exploration of a neural oscillator for biped locomotion control, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2004) pp. 3036–3042

    Google Scholar 

  148. Y. Fukuoka, H. Kimura, A. Cohen: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts, Int. J.Robotics Res. 22(3-4), 187–202 (2003)

    Article  Google Scholar 

  149. R. Brooks: Elephants don't play chess, RoboticsAuton. Syst. 6, 3–15 (1990)

    Article  Google Scholar 

  150. R. Brooks: A robot that walks; emergent behaviors from a carefully evolved network, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (1989) pp. 292–296

    Google Scholar 

  151. J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt: Virtual model control: An intuitive approach for bipedal locomotion, Int. J.Robotics Res. 20, 129–143 (2001)

    Article  Google Scholar 

  152. F. Génot, B. Espiau: On the control of the mass center of legged robots under unilateral constraints, Proc. Int. Conf.Climb.Walk. Robots (1998)

    Google Scholar 

  153. L. Saab, O.E. Ramos, F. Keith, N. Mansard, P. Souères, J.-Y. Fourquet: Dynamic whole-body motion generation under rigid contacts and other unilateral constraints, IEEE Trans. Robotics 29(2), 346–362 (2013)

    Article  Google Scholar 

  154. L. Sentis, J. Park, O. Khatib: Compliant control of multicontact and center-of-mass behaviors in humanoid robots, IEEE Trans.Robotics 26(3), 483–501 (2010)

    Article  Google Scholar 

  155. R.W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, (Birkhäuser, Boston 1983)

    Google Scholar 

  156. S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, K. Tanie: A running controller of humanoid biped HRP-2LR, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2005) pp. 618–624

    Google Scholar 

  157. L. Sentis, O. Khatib: Control of free-floating humanoid robots through task prioritization, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2005) pp. 1730–1735

    Google Scholar 

  158. A. De Luca, G. Oriolo: Modelling and control of nonholonomic mechanical systems, CISM Int. Centre Mech. Sci. 360, 277–342 (1995)

    Article  MATH  Google Scholar 

  159. Y. Nakamura, R. Mukherjee: Exploiting nonholonomic redundancy of free-flying space robots, IEEE Trans.RoboticsAutom. 9(4), 499–506 (1993)

    Google Scholar 

  160. E. Papadopoulos: Nonholonomic behaviour in free-floating space manipulators and its utilization. In: Nonholonomic Motion Planning, ed. by Y. Xu, T. Kanade (Kluwer Academic, Dordrecht 1993)

    Google Scholar 

  161. C. Chevallereau, E.R. Westervelt, J.W. Grizzle: Asymptotically stable running for a five-link, four-actuator, planar bipedal robot, Int. J.Robotics Res. 24(6), 431–464 (2005)

    Article  Google Scholar 

  162. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2003) pp. 1644–1650

    Google Scholar 

  163. M. Popovic, A. Hofmann, H. Herr: Zero spin angular momentum control: definition and applicability, IEEE/RAS Int. Conf. Humanoid Robots (2004)

    Google Scholar 

  164. S.-H. Lee, A. Goswami: Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2010) pp. 3157–3162

    Google Scholar 

  165. C. Ott, M.A. Roa, G. Hirzinger: Posture and balance control for biped robots based on contact force optimization, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2011)

    Google Scholar 

  166. T. Sugihara: Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2009)

    Google Scholar 

  167. Y. Choi, D. Kim, B.-J. You: On the walking control for humanoid robot based on the kinematic resolution of CoM jacobian with embedded motion, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2006) pp. 2655–2660

    Google Scholar 

  168. S.-H. Hyon: Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces, IEEE Trans.Robotics 25(1), 171–178 (2009)

    Article  Google Scholar 

  169. S. Kajita, K. Yokoi, M. Saigo, K. Tanie: Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2001) pp. 3376–3382

    Google Scholar 

  170. S. Lohmeier, K. Löffler, M. Gienger, H. Ulbrich, F. Pfeiffer: Computer system and control of biped Johnnie, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2004) pp. 4222–4227

    Google Scholar 

  171. J.-H. Kim, J.-H. Oh: Walking control of the humanoid platform KHR-1 based on torque feedback control, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2004) pp. 623–628

    Google Scholar 

  172. M.-S. Kim, J.-H. Oh: Posture control of a humanoid robot with a compliant ankle joint, Int. J.Humanoid Robotics 7(1), 5–29 (2010)

    Article  MathSciNet  Google Scholar 

  173. T. Buschmann, S. Lohmeier, H. Ulbrich: Biped walking control based on hybrid position/force control, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2009) pp. 3019–3024

    Google Scholar 

  174. S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, K. Yokoi: Biped walking stabilization based on linear inverted pendulum tracking, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2010) pp. 4489–4496

    Google Scholar 

  175. M. Morisawa, S. Kajita, F. Kanehiro, K. Kaneko, K. Miura, K. Yokoi: Balance control based on capture point error compensation for biped walking on uneven terrain, Proc. IEEE-RAS Int. Conf.Humanoid Robots (2012)

    Google Scholar 

  176. Y. Fujimoto, A. Kawamura: Simulation of an autonomous biped walking robot including environmental force interaction, IEEE RoboticsAutom. Mag. 5(2), 33–41 (1998)

    Article  Google Scholar 

  177. L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, S. Schaal: Optimal distribution of contact forces with inverse dynamics control, Int. J.Robotics Res. 32(3), 280–298 (2013)

    Article  Google Scholar 

  178. A.D. Ames: Human-inspired control of bipedal robotics via control lyapunov functions and quadratic programs, Proc. Int. Conf.Hybrid Syst. Comput.Control (2013)

    Google Scholar 

  179. S. Kuindersma, F. Permenter, R. Tedrake: An efficiently solvable quadratic program for stabilizing dynamic locomotion, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2014)

    Google Scholar 

  180. S.H. Collins, A. Ruina, R. Tedrake, M. Wisse: Efficient bipedal robots based on passive-dynamic walkers, Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  181. S.H. Collins, M. Wisse, A. Ruina: A three-dimensional passive-dynamic walking robot with two legs and knees, Int. J.Robotics Res. 20(7), 607–615 (2001)

    Article  Google Scholar 

  182. R. Tedrake, T.W. Zhang, H.S. Seung: Stochastic policy gradient reinforcement learning on a simple 3D biped, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2004) pp. 2849–2854

    Google Scholar 

  183. J.E. Wilson: Walking Toy, Patent 0 (1936)

    Google Scholar 

  184. R. Tedrake, T.W. Zhang, M.F. Fong, H.S. Seung: Actuating a simple 3D passive dynamic walker, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (2004) pp. 4656–4661

    Google Scholar 

  185. M. Garcia, A. Chatterjee, A. Ruina: Efficiency, speed, and scaling of two-dimensional passive-dynamic walking, Dyn.Stab.Sytems 15(2), 75–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  186. A. Goswami, B. Thuilot, B. Espiau: Compass-Like Biped Robot Part I : Stability and Bifurcation of Passive Gaits, INRIA Res. Rep. No. 2996 (INRIA, Les Chesnay Cedex 1996)

    Google Scholar 

  187. M.W. Spong, G. Bhatia: Further results on control of the compass gait biped, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2003) pp. 1933–1938

    Google Scholar 

  188. F. Asano, Z.-W. Luo, M. Yamakita: Biped gait generation and control based on a unified property of passive dynamic walking, IEEE Trans.Robotics 21(4), 754–762 (2005)

    Article  Google Scholar 

  189. J.T. Betts: Survey of numerical methods for trajectory optimization, J.Guid. Control,Dyn. 21(2), 193–207 (1998)

    Article  MATH  Google Scholar 

  190. C.D. Remy: Optimal Exploitation of Natural Dynamics in Legged Locomotion, Dissertation (ETH, Zurich 2011)

    Google Scholar 

  191. K. Sreenath, H.W. Park, I. Poulakakis, J.W. Grizzle: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL, Int. J. Robotics Res. 30(9), 1170–1193 (2011)

    Article  Google Scholar 

  192. Y. Tassa, T. Erez, E. Todorov: Synthesis and stabilization of complex behaviors through online trajectory optimization, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (2012) pp. 4906–4913

    Google Scholar 

  193. S. Hirose, A. Nagakubo, R. Toyama: Machine that can walk and climb on floors, walls and ceilings, Proc. Int. Conf.Adv. Robotics (1991) pp. 753–758

    Google Scholar 

  194. T. Yano, S. Numao, Y. Kitamura: Development of a self-contained wall climbing robot with scanning type suction cups, Proc. IEEE/RSJ Int. Conf.Intell. Robots Syst. (IROS) (1998) pp. 249–254

    Google Scholar 

  195. S. Kim, A. Asbeck, W. Provancher, M.R. Cutkosky: SpinybotII: Climbing hard walls with compliant microspines, Proc. Int. Conf.Adv. Robotics (2005) pp. 18–20

    Google Scholar 

  196. S. Hirose, K. Yoneda, H. Tsukagoshi: TITAN VII: quadruped walking and manipulating robot on a steep slope, Proc. IEEE Int. Conf.Robotics Autom. (ICRA) (1997) pp. 494–500

    Google Scholar 

  197. J. Bares, D. Wettergreen: Dante II: technical description, results and lessons learned, Int. J.Robotics Res. 18(7), 621–649 (1999)

    Article  Google Scholar 

  198. G. Endo, S. Hirose: Study on roller-walker (system integration and basic experiments), IEEE Int. Conf. Robotics Autom. (1999) pp. 2032–2037

    Google Scholar 

  199. R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet: Innovative design for wheeled locomotion in rough terrain, RoboticsAuton. Syst. 40, 151–162 (2002)

    Article  Google Scholar 

  200. K. Iagnemma, A. Rzepniewski, S. Dubowsky: Control of robotic vehicles with actively articulated suspensions in rough terrain, Auton. Robots 14, 5–16 (2003)

    Article  MATH  Google Scholar 

  201. K. Iagnemma, S. Dubowsky: Traction control of wheeled robotic vehicles in rough terrain with application to planetary rovers, Int. J.Robotics Res. 23(10–11), 1029–1040 (2004)

    Article  Google Scholar 

  202. C. Grand, F. Ben Amar, F. Plumet, P. Bidaud: Stability and traction optimization of a wheel-legged robot, Int. J.Robotics Res. 23(10–11), 1041–1058 (2004)

    Article  Google Scholar 

  203. G. Besseron, C. Grand, F. Ben Amar, F. Plumet, P. Bidaud: Locomotion modes of an hybrid wheel-legged robot, Proc. Int. Conf.Climb.Walk. Robots (2004)

    Google Scholar 

  204. U. Saranli, M. Buehler, D.E. Koditschek: Rhex - a simple and highly mobile hexapod robot, Int. J.Robotics Res. 20(7), 616–631 (2001)

    Article  Google Scholar 

  205. T. Allen, R. Quinn, R. Bachmann, R. Ritzmann: Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2003) pp. 1370–1375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Brice Wieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wieber, PB., Tedrake, R., Kuindersma, S. (2016). Modeling and Control of Legged Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics