Skip to main content

Quantification of Climate Change and Variability Impacts on Maize Production at Farm Level in the Wami River Sub-Basin, Tanzania

  • Chapter
  • First Online:
Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability

Abstract

Up to 95 % of food production in Tanzania depends on rainfall, whose timing, quantity and distribution is highly affected by climate variability and will highly likely change as a result of global warming. Several analyses have been done on the response of several crops in different agro-ecological zones and cropping systems to the impacts of changing climate and interactions of several climate variables have been highlighted. Many of the previous efforts have based on aggregations at sub-national and national scales, and have not considered the impacts and adaptation initiatives on individual fields, where the impacts will be directly felt. In this study, we quantify climate change impacts and adaptation for coping with future climate by individual farm fields in the Wami River sub-basin in Tanzania. The assessment was based on two RCPS and five downscaled GCMs with two time periods up to year 2100, involving a total of 168 farm fields. Maize yield change was projected to be in the negative direction for all the GCMs in both RCPs and periods. Organic matter application was an important climate change adaptation option whereas nitrogen fertilizer would only be suitable in more humid, rather than in semi-arid sections of the study area. We conclude that farm level climate change impacts quantification and adaptation assessment is key in designing sound adaptation strategies based on biophysical and socioeconomic endowments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraha, M., and M. Savage. 2006. Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa. Agriculture, Ecosystems & Environment 115: 150–160.

    Article  Google Scholar 

  • Agrell, J., P. Anderson, W. Oleszek, A. Stochmal, and C. Agrell. 2004. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. Journal of Chemical Ecology 30: 2309–2324.

    Article  CAS  Google Scholar 

  • Ahmed, S.A., N.S. Diffenbaugh, T.W. Hertel, D.B. Lobell, N. Ramankutty, A.R. Rios, and P. Rowhani. 2009. Climate volatility and poverty vulnerability in Tanzania, Policy research working paper. Washington, DC: World Bank.

    Book  Google Scholar 

  • Ahmed, S.A., N.S. Diffenbaugh, T.W. Hertel, D.B. Lobell, N. Ramankutty, A.R. Rios, and P. Rowhani. 2011. Climate volatility and poverty vulnerability in Tanzania. Global Environmental Change 21: 46–55.

    Article  Google Scholar 

  • Ainsworth, E.A., and S.P. Long. 2005. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351–372.

    Article  Google Scholar 

  • Amuri, N.A. 2015. Enhancing resilience of food production systems under changing climate and soil degradation in semi-arid and highlands of Tanzania. In Sustainable intensification to advance food security and enhance climate resilience in Africa. Cham: Springer.

    Google Scholar 

  • Arndt, C., W. Farmer, K. Strzepek, and J. Thurlow. 2012. Climate change, agriculture and food security in Tanzania. Review of Development Economics 16: 378–393.

    Article  Google Scholar 

  • Aune, J.B., and A. Coulibaly. 2015. Microdosing of mineral fertilizer and conservation agriculture for sustainable agricultural intensification in Sub-Saharan Africa. In Sustainable intensification to advance food security and enhance climate resilience in Africa. Cham: Springer.

    Google Scholar 

  • World Bank. 2012. The population below poverty line. http://data.worldbank.org/topic/poverty

  • Barnabás, B., K. Jäger, and A. Fehér. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment 31: 11–38.

    Google Scholar 

  • Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential – Are they compatible, dissonant, or mutually exclusive? Crop and Pasture Science 56: 1159–1168.

    Article  Google Scholar 

  • Caldwell, C.R., S.J. Britz, and R.M. Mirecki. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. Journal of Agricultural and Food Chemistry 53: 1125–1129.

    Article  CAS  Google Scholar 

  • Cassman, K.G., A. Dobermann, D.T. Walters, and H. Yang. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources 28: 315–358.

    Article  Google Scholar 

  • Enfors, E.I., and L.J. Gordon. 2008. Dealing with drought: The challenge of using water system technologies to break dryland poverty traps. Global Environmental Change 18: 607–616.

    Article  Google Scholar 

  • FAO. 2015. FOASTAT Database. Food and Agriculture Organization, Rome Available from: faostat.fao.org/. Accessed 20 Sept 2015.

  • Fischer, G., M. Shah, F.N. Tubiello, and H. Van Velhuizen. 2005. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society, B: Biological Sciences 360: 2067–2083.

    Article  Google Scholar 

  • Foley, J.A., R. Defries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, and H.K. Gibbs. 2005. Global consequences of land use. Science 309: 570–574.

    Article  CAS  Google Scholar 

  • Gibbs, H.K., A.S. Ruesch, F. Achard, M.K. Clayton, P. Holmgren, N. Ramankutty, and J.A. Foley. 2010. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences 107: 16732–16737.

    Article  CAS  Google Scholar 

  • Griffin, J.J., T.G. Ranney, and D.M. Pharr. 2004. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). Journal of the American Society for Horticultural Science 129: 497–502.

    CAS  Google Scholar 

  • Haefele, S.M., Y. Kato, and S. Singh. 2016. Climate ready rice: Augmenting drought tolerance with best management practices. Field Crops Research 190: 60–69.

    Article  Google Scholar 

  • Hunt, L., and K. Boote. 1998. Data for model operation, calibration, and evaluation. In Understanding options for agricultural production. Berlin: Springer.

    Google Scholar 

  • IPCC. 2014a. In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change, eds. C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. Maccracken, P.R. Mastrandrea, and L.L. White. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • IPCC. 2014b. Summary for policymakers. In: Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability, ed. C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. Maccracken, P.R. Mastrandrea, and L.L.W. Cambridge/New York: Cambridge University Pres.

    Google Scholar 

  • Ito, T., and T. Kurosaki. 2009. Weather risk, wages in kind, and the off-farm labor supply of agricultural households in a developing country. American Journal of Agricultural Economics 91: 697–710.

    Article  Google Scholar 

  • Jat, M.L., J.C. Dagar, T.B. Sapkota, S. Yadvinder, B. Govaerts, S.L. Ridaura, Y.S. Saharawat, R.K. Sharma, J.P. Tetarwal, R.K. Jat, H. Hobbs, and C. Stirling. 2016. Chapter Three – Climate change and agriculture: Adaptation strategies and mitigation opportunities for food security in South Asia and Latin America. In Advances in agronomy, ed. L.S. Donald, 127–235. Academic Press.

    Google Scholar 

  • Jones, C.A., J.R. Kiniry, and P. Dyke. 1986. CERES-Maize: A simulation model of maize growth and development. College Station: Texas A and M University Press.

    Google Scholar 

  • Kahimba, F.C., K.D. Mutabazi, S.D. Tumbo, K.F. Masuki, and W.B. Mbungu. 2014. Adoption and scaling-up of conservation agriculture in Tanzania: Case of Arusha and Dodoma regions. Natural Resources 05: 161–176.

    Article  Google Scholar 

  • Kang, Y., S. Khan, and X. Ma. 2009. Climate change impacts on crop yield, crop water productivity and food security–A review. Progress in Natural Science 19: 1665–1674.

    Article  Google Scholar 

  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75: 779–788.

    Article  Google Scholar 

  • Kimball, B., K. Kobayashi, and M. Bindi. 2002. Responses of agricultural crops to free-air CO 2 enrichment. Advances in Agronomy 77: 293–368.

    Article  Google Scholar 

  • Lal, R. 2009. Challenges and opportunities in soil organic matter research. European Journal of Soil Science 60: 158–169.

    Article  CAS  Google Scholar 

  • Leakey, A.D.B. 2009. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society of London B: Biological Sciences 276: 2333–2343.

    Article  CAS  Google Scholar 

  • Leenaars, J. 2013. Africa soil profiles database, version 1.1. A compilation of georeferenced and standardised legacy soil profile data for Sub-Saharan Africa (with dataset). ISRIC Report, 3.

    Google Scholar 

  • Leyaro, V., and O. Morrissey. 2013. Expanding agricultural production in Tanzania. Scoping study for IGC Tanzania on the National Panel Surveys. International growth Centre (IGC), London School of Economic and Political Science, Houghton Street, London WC2A 2AE.

    Google Scholar 

  • Lobell, D.B., and C.B. Field. 2007. Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters 2: 014002.

    Article  Google Scholar 

  • Lobell, D.B., and S.M. Gourdji. 2012. The influence of climate change on global crop productivity. Plant Physiology 160: 1686–1697.

    Article  CAS  Google Scholar 

  • Lobell, D.B., M.B. Burke, C. Tebaldi, M.D. Mastrandrea, W.P. Falcon, and R.L. Naylor. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319: 607–610.

    Article  CAS  Google Scholar 

  • Lokina, R., M. Nerman, and J. Sandefur. 2011. Poverty and productivity: Small-scale farming in Tanzania, 1991–2007. Preliminary results for International Growth Centre commissioned study.

    Google Scholar 

  • Long, S.P., E.A. Ainsworth, A. Rogers, and D.R. Ort. 2004. Rising atmospheric carbon dioxide: Plants FACE the Future*. Annual Review of Plant Biology 55: 591–628.

    Article  CAS  Google Scholar 

  • Long, S.P., E.A. Ainsworth, A.D. Leakey, J. Nösberger, and D.R. Ort. 2006. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312: 1918–1921.

    Article  CAS  Google Scholar 

  • Lyimo, J.G., and R.Y. Kangalawe. 2010. Vulnerability and adaptive strategies to the impact of climate change and variability. The case of rural households in Semiarid Tanzania. Environmental Economics 1: 88–96.

    Google Scholar 

  • Maestri, E., N. Klueva, C. Perrotta, M. Gulli, H.T. Nguyen, and N. Marmiroli. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology 48: 667–681.

    Article  CAS  Google Scholar 

  • Mahoo, H., W. Mbungu, I. Yonah, M. Radeny, P. Kimeli, and J. Kinyangi. 2015. Integrating indigenous knowledge with scientific seasonal forecasts for climate risk management in Lushoto district in Tanzania. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

    Google Scholar 

  • Mbungu, W., V. Ntegeka, F.C. Kahimba, M. Taye, and P. Willems. 2012. Temporal and spatial variations in hydro-climatic extremes in the Lake Victoria basin. Physics and Chemistry of the Earth, Parts A/B/C 50–52: 24–33.

    Article  Google Scholar 

  • Mbungu, W.B., H.F. Mahoo, S.D. Tumbo, F.C. Kahimba, F.B. Rwehumbiza, and B.P. Mbilinyi. 2015. Using climate and crop simulation models for assessing climate change impacts on agronomic practices and productivity. In Sustainable intensification to advance food security and enhance climate resilience in Africa. Cham: Springer.

    Google Scholar 

  • Meinshausen, M., S.J. Smith, K. Calvin, J.S. Daniel, M. Kainuma, J. Lamarque, K. Matsumoto, S. Montzka, S. Raper, and K. Riahi. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109: 213–241.

    Article  CAS  Google Scholar 

  • Mongi, H., A. Majule, and J. LYIMO. 2010. Vulnerability and adaptation of rain fed agriculture to climate change and variability in semi-arid Tanzania. African Journal of Environmental Science and Technology 4: 371–381.

    Article  Google Scholar 

  • Moore, N., G. Alagarswamy, B. Pijanowski, P. Thornton, B. Lofgren, J. Olson, J. Andresen, P. Yanda, and J. Qi. 2012. East African food security as influenced by future climate change and land use change at local to regional scales. Climatic Change 110: 823–844.

    Article  Google Scholar 

  • Morgan, J., D. Pataki, C. Körner, H. Clark, S. Del GROSSO, J. Grünzweig, A. Knapp, A. Mosier, P. Newton, and P.A. Niklaus. 2004. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140: 11–25.

    Article  CAS  Google Scholar 

  • Morton, J.F. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences 104: 19680–19685.

    Article  CAS  Google Scholar 

  • Mourice, S. K., C.L. Rweyemamu, S.D. Tumbo, and N. Amuri. 2014a. Maize cultivar specific parameters for decision support system for agrotechnology transfer (DSSAT) application in Tanzania. American Journal of Plant Sciences, 5: 55–65.

    Google Scholar 

  • Mourice, S., C. Rweyemamu, A. Nyambilila, and S. Tumbo. 2014b. Narrowing maize yield gaps under rain-fed conditions in Tanzania: Effect of small nitrogen dose. Tanzania Journal of Agricultural Sciences, 12: 821–833.

    Google Scholar 

  • Mourice, S.K., S.D. Tumbo, A. Nyambilila, and C.L. Rweyemamu. 2015. Modeling potential rain-fed maize productivity and yield gaps in the Wami River sub-basin, Tanzania. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 65: 132–140.

    Article  Google Scholar 

  • Mwandosya, M.J., B.S. Nyenzi, and M. Lubanga. 1998. The assessment of vulnerability and adaptation to climate change impacts in Tanzania. Dar es Salaam: Centre for Energy, Environment, Science and Technology.

    Google Scholar 

  • NBS. 2012. National Bureau of Statistics, National panel survey 2009–2010. Available from: www.nbs.go.tz. Accessed on 24 Sept 2015.

  • Ngana, J., F. Mahay, and K. Cross. 2010. Wami basin: A situation analysis. Nairobi: International Union for Conservation of Nature (IUCN).

    Google Scholar 

  • Nowak, R.S., D.S. Ellsworth, and S.D. Smith. 2004. Functional responses of plants to elevated atmospheric CO2–do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162: 253–280.

    Article  Google Scholar 

  • Paavola, J. 2008. Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania. Environmental Science & Policy 11: 642–654.

    Article  Google Scholar 

  • R_CORE_TEAM. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available at www.R-project.org.

  • Ray, J.D., R.W. Gesch, T.R. Sinclair, and L.H. Allen. 2002. The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant and Soil 239: 113–121.

    Article  CAS  Google Scholar 

  • Reilly, J., F. Tubiello, B. Mccarl, D. Abler, R. Darwin, K. Fuglie, S. Hollinger, C. Izaurralde, S. Jagtap, and J. Jones. 2003. US agriculture and climate change: New results. Climatic Change 57: 43–67.

    Article  Google Scholar 

  • Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. RCP 8.5 – A scenario of comparatively high greenhouse gas emissions. Climatic Change 109: 33–57.

    Article  CAS  Google Scholar 

  • Ritchie, J., U. Singh, D. Godwin, and W. Bowen. 1998. Cereal growth, development and yield. In Understanding options for agricultural production. Netherlands: Springer.

    Google Scholar 

  • Rosenzweig, C., and A. Iglesias. 1998. The use of crop models for international climate change impact assessment. In Understanding options for agricultural production. Netherlands: Springer.

    Google Scholar 

  • Rosenzweig, C., J. Elliott, D. Deryng, A.C. Ruane, C. Müller, A. Arneth, K.J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T.A.M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J.W. Jones. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111: 3268–3273.

    Article  CAS  Google Scholar 

  • Rowhani, P., D.B. Lobell, M. Linderman, and N. Ramankutty. 2011. Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology 151: 449–460.

    Article  Google Scholar 

  • Salami, A., A.B. Kamara, and Z. Brixiova. 2010. Smallholder agriculture in East Africa: Trends, constraints and opportunities. Tunisia: African Development Bank Tunis.

    Google Scholar 

  • Sarris, A., S. Savastano, and L. Christiaensen. 2006. The role of agriculture in reducing poverty in Tanzania: A household perspective from rural Kilimanjaro and Ruvuma, FAO commodity and trade policy research working paper. Rome: FAO.

    Google Scholar 

  • Saxton, K.E., and W.J. Rawls. 2009. Soil water properties calculator. Version 6.02. Available from: http://hydrolab.arsusda.gov/soilwater/Index.htm.

  • Schlenker, W., and D.B. Lobell. 2010. Robust negative impacts of climate change on African agriculture. Environmental Research Letters 5: 014010.

    Article  Google Scholar 

  • Schmidhuber, J., and F.N. Tubiello. 2007. Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America 104: 19703–19708.

    Article  CAS  Google Scholar 

  • Shetto, R., and M. Owenya. 2007. Conservation agriculture as practised in Tanzania: Three case studies: Arumeru district, Karatu district, Mbeya district. Nairobi: ACT, FAO, CIRAD, RELMA.

    Google Scholar 

  • Sicher, R.C., and J.Y. Barnaby. 2012. Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiologia Plantarum 144: 238–253.

    Article  CAS  Google Scholar 

  • Skidmore, E., J. Layton, D. Armbrust, and M. Hooker. 1986. Soil physical properties as influenced by cropping and residue management. Soil Science Society of America Journal 50: 415–419.

    Article  Google Scholar 

  • Soini, E. 2005. Land use change patterns and livelihood dynamics on the slopes of Mt. Kilimanjaro, Tanzania. Agricultural Systems 85: 306–323.

    Article  Google Scholar 

  • Solomon, D., J. Lehmann, and W. Zech. 2000. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: Carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems & Environment 78: 203–213.

    Article  CAS  Google Scholar 

  • Stone, P. 2001. The effects of heat stress on cereal yield and quality. In Crop responses and adaptations to temperature stress, 243–291. New York: Food Products Press.

    Google Scholar 

  • SUA. 2010. Soil Water Management Research Group (2010). Economics of climate change for the Agriculture Sector in Tanzania. Morogoro: Morogoro.

    Google Scholar 

  • Teyssonneyre, F., C. Picon‐Cochard, J.F. Falcimagne, and R. Soussana. 2002. Effects of elevated CO2 and cutting frequency on plant community structure in a temperate grassland. Global Change Biology 8: 1034–1046.

    Article  Google Scholar 

  • Thomas, J., K. Boote, L. Allen, M. Gallo-Meagher, and J. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Science 43: 1548–1557.

    Article  Google Scholar 

  • Thomson, A.M., K.V. Calvin, S.J. Smith, G.P. Kyle, A. Volke, P. Patel, S. Delgado-Arias, B. Bond-Lamberty, M.A. Wise, and L.E. Clarke. 2011. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Climatic Change 109: 77–94.

    Article  CAS  Google Scholar 

  • Tubiello, F.N., J.-F. Soussana, and S.M. Howden. 2007. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences 104: 19686–19690.

    Article  CAS  Google Scholar 

  • Tumbo, S., K. Mutabazi, F. Kahimba, and W. Mbungu. 2011. Conservation agriculture in Tanzania. Dar es Salaam: Sokoine University of Agriculture.

    Google Scholar 

  • Tumbo, S., F. Kahimba, B. Mbilinyi, F. Rwehumbiza, H. Mahoo, W. Mbungu, and E. Enfors. 2012. Impact of projected climate change on agricultural production in semi-arid areas of Tanzania: A case of same district. African Crop Science Journal 20: 453–463.

    Google Scholar 

  • URT. 2002. National irrigation master plan of Tanzania. Dar Es Salaam: United Republic of Tanzania.

    Google Scholar 

  • URT. 2007. United Republic of Tanzania, 2007. National adaptation program of action. Vice.

    Google Scholar 

  • URT. 2008a. United Republic of Tanzania (URT), 2008. Agriculture sector review and public expenditure review 2008/09. Dar Es Salaam: Ministry of Agriculture Food Security and Cooperatives.

    Google Scholar 

  • URT. 2008b. United Republic of Tanzania (URT), 2008. The economic survey 2007. Dar-es Salaam: The Ministry of Finance and Economic Affairs.

    Google Scholar 

  • URT. 2008c. Study on strategies for addressing negative effects of climate change in food insecure areas of Tanzania. In eds. Ministry of Agriculture, F. A. C. Dar Es Salaam: Ministry of Agriculture, Food and Cooperatives.

    Google Scholar 

  • URT. 2009. Climate change and agriculture policy brief. Dar es Salaam: Vice President’s Offi ce, Division of Environment.

    Google Scholar 

  • URT. 2012a. Priority investments: Irrigation development, water resources and land use management. Tanzania: United Republic of Tanzania.

    Google Scholar 

  • URT. 2012b. Tanzania national climate change strategy. Dar Es Salaam: Division of Environment, Vice President’s Office.

    Google Scholar 

  • URT. 2012c. National climate change strategy. Dar Es Salaam: Vice President’s Office, Division of the Environment.

    Google Scholar 

  • URT. 2014. Ministry of Agriculture, Food Security and Cooperatives (MAFC): Tanzania Agriculture Climate Resilience Plan, 2014–2019. Report 83 pp. Available from: http://www.agriculture.go.tz/publications. Accessed on 25 Sept 2015. Dar Es Salaam: United Republic of Tanzania: Ministry of Agriculture, Food Security and Cooperatives (MAFC).

  • Van Vuuren, D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, and J.-F. Lamarque. 2011. The representative concentration pathways: An overview. Climatic Change 109: 5–31.

    Article  Google Scholar 

  • Von Caemmerer, S., and R.T. Furbank. 2003. The C4 pathway: An efficient CO2 pump. Photosynthesis Research 77: 191–207.

    Article  Google Scholar 

  • World_Bank. 2009. Tanzania: Country brief. Washington, DC: World Bank.

    Google Scholar 

  • WRBWO. 2007. Environmental Flow Assessment (EFA), Wami River Sub-Basin, Tanzania: The Wami hydrology. Volume 1 – general description. Morogoro 2007. Morogoro: Wami/Ruvu Basin Water Office.

    Google Scholar 

  • Ziska, L.H., and K. George. 2004. Rising carbon dioxide and invasive, noxious plants: potential threats and consequences. World Resource Review 16: 427–447.

    Google Scholar 

Download references

Acknowledgement

Authors of this study wish to acknowledge Agricultural Model Inter-comparison Project (AgMIP) and Enhancing Climate Change Adaptation in Agriculture and Water Resources (ECAW) Project through the Soil Water Management Research Programme at Sokoine University of Agriculture (SUA) for technical and financial support for implementing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfred Mbungu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mourice, S.K., Mbungu, W., Tumbo, S.D. (2017). Quantification of Climate Change and Variability Impacts on Maize Production at Farm Level in the Wami River Sub-Basin, Tanzania. In: Ahmed, M., Stockle, C. (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-32059-5_13

Download citation

Publish with us

Policies and ethics