Abstract
Laser photothermal therapy using gold nanoparticles in cancer research has attracted a lot of attentions in past decades, since it provides an alternative approach to traditional hyperthermia methods. This review is focused on advancements in gold nanoparticle development and the underlying mechanisms to confine heat generation in tumors when these nanoparticles interact with an incident laser. First, an overview of hyperthermia used in medicine is given, and the development of gold nanoparticles in laser photothermal therapy is discussed. Second, physical mechanisms in generating heat utilizing gold nanoparticles, nanoparticle delivery, and toxicity reaction after injection are described. The next section is focused on evaluation of performance of laser photothermal therapy in clinical/animal studies. Monte Carlo methods are presented to demonstrate current theoretical simulation approaches to determine laser energy absorption distribution in tissue enhanced by gold nanoparticles. Furthermore, modeling heat transfer and assessing thermal damage in biological tissue using gold nanoparticles in designing treatment protocols are described to show a typical designing process. At the end of this review, the current challenges facing clinicians and researchers in delivering effective and safe thermal dosage in laser photothermal therapy are discussed.
Similar content being viewed by others
References
Aaseth J, Haugen M, Forre O (1998) Rheumatoid arthritis and metal compounds–perspectives on the role of oxygen radical detoxification. Analyst 123(1):3–6
American Cancer Society (2016) Cancer facts and figures. American Cancer Society, Atlanta
Amreddy N, Muralidharan R, Babu A, Mehta M, Johnson EV, Zhao YD, Munshi A, Ramesh R (2015) Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Nanomedicine 10:6773
Anvari B, Rastegar S, Motamedi M (1994) Modeling of intraluminal heating of biological tissue: implications for treatment of benign prostatic hyperplasia. IEEE Trans Biomed Eng 41(9):854–864
Ashokkumar T, Prabhu D, Geetha R, Govindaraju K, Manikandan R, Arulvasu C, Singaravelu G (2014) Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. Colloids Surf B: Biointerfaces 123:549–556
Bazile D, Prud’homme C, Bassoullet M-T, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84(4):493–498
Berlien HMG (2003) Applied laser medicine. Springer, Berlin
Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neuro-Oncol 86(2):165–172
Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J Am Chem Soc 127(50):17600–17601
Bhowmik A, Singh R, Repaka R, Mishra SC (2013) Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol 38(3):107–125
Black KC, Kirkpatrick ND, Troutman TS, Xu L, Vagner J, Gillies RJ, Barton JK, Utzinger U, Romanowski M (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7(1):50–57
Boris K, Vladimir Z, Andrei M, Valery T, Nikolai K (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17(20):5167
Bush W (1886) Uber den finfluss wetchen heftigere eryspelen zuweilen auf organlsierte neubildungen dusuben. Verh Natruch Peuss Rhein Westphal 23:28–30
Cabada TF, de Pablo CS, Serrano AM, del Pozo Guerrero F, Olmedo JJ, Gomez MR (2012) Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods. Int J Nanomed 7:1511
Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. doi:10.2147/NSA.S37888
Carrasco E, del Rosal B, Sanz-Rodríguez F, de la Fuente ÁJ, Gonzalez PH, Rocha U, Kumar KU, Jacinto C, Solé JG, Jaque D (2015) Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv Funct Mater 25(4):615–626
Caruso F, Niikura K, Furlong DN, Okahata Y (1997) 2. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13(13):3427–3433
Chang IA, Nguyen UD (2004) Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed Eng Online 3(1):1
Charny CK, Weinbaum S, Levin RL (1990) An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions. J Biomech Eng 112(1):80–87
Chato JC (1981) ASME centennial historical perspective paper: reflections on the history of heat and mass transfer in bioengineering. J Biomech Eng 103(2):97–101
Chaussy C, Thüroff S (2004) Results and side effects of high-intensity focused ultrasound in localized prostate cancer. J Endourol 15(4):437–440
Cheheltani R, Ezzibdeh RM, Chhour P, Pulaparthi K, Kim J, Jurcova M, Hsu JC, Blundell C, Litt HI, Ferrari VA, Allcock HR, Sehgal CM, Cormode DP (2016) Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 102:87–97
Chen MM, Holmes KR (1980) Microvascular contributions in tissue heat transfer. Ann N Y Acad Sci 335(1):137–150
Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, Shen M, Zhang G, Shi X (2013) Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 34(21):5200–5209
Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62(3):339–345
Chhetri S, Hirschberg H, Madsen SJ (2014) Photothermal therapy of human glioma spheroids with gold-silica nanoshells and gold nanorods: a comparative study. In: Proceedings of SPIE 8928, optical techniques in neurosurgery, neurophotonics, and optogenetics, 89280U
Choi M-R, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, Badve S, Sturgis J, Robinson JP, Bashir R, Halas NJ, Clare SE (2007) A cellular trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765
Chon JWM, Bullen C, Zijlstra P, Gu M (2007) Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17(6):875–880
Colby AH, Liu R, Schulz MD, Padera RF, Colson YL, Grinstaff MW (2016) Two-step delivery: exploiting the partition coefficient concept to increase intratumoral paclitaxel concentrations in vivo using responsive nanoparticles. Sci Rep 6:18720
Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ (2009) Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 113(28):12090–12094
Conde J, Oliva N, Zhang Y, Artzi N (2016) Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat Mater 15:1128–1138. advance online publication
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327
Cortesi R, Esposito E, Menegatti E, Gambari R, Nastruzzi C (1996) Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA. Int J Pharm 139(1):69–78
Decuzzi P, Pasqualini R, Arap W, Ferrari M (2008) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–243
Dewhirst M, Viglianti B, Lora-Michiels M, Hanson M, Hoopes P (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth 19(3):267–294
Dewhirst MW, Vujaskovic Z, Jones E, Thrall D (2005) Re-setting the biologic rationale for thermal therapy. Int J Hyperth 21(8):779–790
Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66
Diederich CJ (2005) Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperth 21(8):745–753
Durkee J Jr, Antich P (1991) Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions. Phys Med Biol 36(3):345
Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945. doi:10.1021/nl062962v
El-dabe NTM, Mohamed M, El-Sayed AF (2003) Effects of microwave heating on the thermal states of biological tissues. Afr J Biotechnol 2(11):453–459
Elliott AM, Stafford RJ, Schwartz J, Wang J, Shetty AM, Bourgoyne C, O’Neal P, Hazle JD (2007) Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med Phys 34(7):3102–3108
El-Sayed MA, Shabaka AA, El-Shabrawy OA, Yassin NA, Mahmoud SS, El-Shenawy SM, Al-Ashqar E, Eisa WH, Farag NM, El-Shaer MA, Salah N (2013) Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model. PLoS One 8(10):e76207
El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135. doi:10.1016/j.canlet.2005.07.035
Engin K (1994) Biological rationale for hyperthermia in cancer treatment (II). Neoplasma 41(5):277–283
Flock ST, Patterson MS, Wilson BC, Wyman DR (1989) Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Trans Biomed Eng 36(12):1162–1168
Gao B, Xu J, He K-W, Shen L, Chen H, Yang H-J, Li A-H, Xiao W-H (2016) Cellular uptake and intra-organ biodistribution of functionalized silica-coated gold nanorods. Mol Imaging Biol 18:1–10
Garg S, Vermani K, Garg A, Anderson AR, Rencher BW, Zaneveld DLJ (2005) Development and characterization of bioadhesive vaginal films of sodium polystyrene sulfonate (PSS), a novel contraceptive antimicrobial agent. Pharm Res 22(4):584–595
Gelet A, Chapelon JY, Bouvier R, Rouviere O, Lasne Y, Lyonnet D, Dubernard JM (2000) Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J Endourol/Endourol Soc 14(6):519–528
Gobin AM, Moon JJ, West JL (2008) EphrinA I-targeted nanoshells for photothermal ablation of prostate cancer cells. Int J Nanomedicine 3(3):351–358
Gong T, Olivo M, Dinish US, Goh D, Kong KV, Yong K-T (2013) Engineering bioconjugated gold nanospheres and gold nanorods as label-free plasmon scattering probes for ultrasensitive multiplex dark-field imaging of cancer cells. J Biomed Nanotechnol 9(6):985–991
Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900
Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126(49):15938–15939
Gormley AJ, Greish K, Ray A, Robinson R, Gustafson JA, Ghandehari H (2011) Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery. Int J Pharma 415(1):315–318
Guo Z, Fan X, Liu L, Bian Z, Gu C, Zhang Y, Gu N, Yang D, Zhang J (2010) Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. J Colloid Interface Sci 348(1):29–36
Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221
Heilmann A, Kreibig U (2000) Optical properties of embedded metal nanoparticles at low temperatures. Eur Phys J Appl Phys 10(3):193–202
Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554
Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120
Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228
Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27(4):8–16
Huff TB, Hansen MN, Zhao Y, Cheng JX, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599. doi:10.1021/la062642r
Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem B-C, Abdel-Rahman S, Daugaard S, Salat C, Wendtner C-M, Vujaskovic Z, Wessalowski R, Jauch K-W, Dürr HR, Ploner F, Baur-Melnyk A, Mansmann U, Hiddemann W, Blay J-Y, Hohenberger P (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11(6):561–570
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248
Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113
Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067
Jiji LM, Weinbaum S, Lemons DE (1984) Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer – part II: model formulation and solution. J Biomech Eng 106(4):331–341
Jo W, Lee JH, Kim MJ (2012) Temperature measurement in a single patterned gold nanorod cluster using laser-induced fluorescence. J Nanopart Res 14(1):1–11
Johannsen M, Gneveckow U, Eckelt L, Feussner A, WaldÖFner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21(7):637–647
Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari ZA, Shanker V, Chakrabarti P, Singh SP (2012) The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B: Biointerfaces 95:195–200
Kang Y, Taton TA (2005) Controlling shell thickness in core−shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants. Macromolecules 38(14):6115–6121
Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43(45):6042–6108
Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183
Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124(48):14316–14317
Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS (2010) Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 5(6):465–472
Kogan B, Andronova N, Khlebtsov N, Khlebtsov B, Rudoy V, Dement’eva O, Sedykh E, Bannykh L (2008) Pharmacokinetic study of PEGylated plasmon resonant gold nanoparticles in tumor-bearing mice. Tech Proc 2008 NSTI Nanotechnol Conf 2:65–68
Krag DN, Fuller SP, Oligino L, Pero SC, Weaver DL, Soden AL, Hebert C, Mills S, Liu C, Peterson D (2002) Phage-displayed random peptide libraries in mice: toxicity after serial panning. Cancer Chemother Pharmacol 50(4):325–332
Kreith F (2000) Handbook of thermal engineering. CRC Press, Boca Raton
Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851
Lanuti M, Sharma A, Digumarthy SR, Wright CD, Donahue DM, Wain JC, Mathisen DJ, Shepard J-AO (2009) Radiofrequency ablation for treatment of medically inoperable stage I non–small cell lung cancer. J Thorac Cardiovasc Surg 137(1):160–166
Larson TR, Blute ML, Bruskewitz RC, Mayer RD, Ugarte RR, Utz WJ (1998) A high-efficiency microwave thermoablation system for the treatment of benign prostatic hyperplasia: results of a randomized, sham-controlled, prospective, double-blind, multicenter clinical trial. Urology 51(5):731–742
Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49
Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple thiol-anchor capped DNA–gold nanoparticle conjugates. Nucleic Acids Res 30(7):1558–1562
Li FM, Liu JM, Wang XX, Lin LP, Cai WL, Lin X, Zeng YN, Li ZM, Lin SQ (2011) Non-aggregation based label free colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods. Sens Actuat B Chem 155(2):817–822
Li J, Gupta S, Li C (2013) Gold nanoparticles in cancer theranostics. Quant Imaging Med Surg 3(6):284–291
Liang Z, Susha A, Caruso F (2003) Gold nanoparticle-based core−shell and hollow spheres and ordered assemblies. There Chem Mater 15(16):3176–3183
Lin HW, Lu YJ, Chen HY, Lee HM, Gwo S, (2010) InGaN/GaN nanorod array white light-emitting diode. Appl Phys Lett 97(7):073101
Lin YG, Hsu YK, Chen YC, Wang SB, Miller JT, Chen LC, Chen KH (2012) Plasmonic Ag@ Ag 3 (PO 4) 1−x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation. Energy Environ Sci 5(10):8917–22
Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426
Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453
Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103(16):3073–3077
Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104(26):6152–6163
Liu M, Kono K, Fréchet JMJ (1999) Water-soluble dendrimer–poly(ethylene glycol) starlike conjugates as potential drug carriers. J Polym Sci A Polym Chem 37(17):3492–3503
Liu SY, Liang ZS, Gao F, Luo SF, Lu GQ (2010) In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. J Mater Sci Mater Med 21(2):665–674
Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711
Lu J, Zhou W, Wang L, Jia J, Ke Y, Yang L, Zhou K, Liu X, Tang Z, Li L, Chen S (2016) Core–shell nanocomposites based on gold nanoparticle@zinc–iron-embedded porous carbons derived from metal–organic frameworks as efficient dual catalysts for oxygen reduction and hydrogen evolution reactions. ACS Catal 6(2):1045–1053
Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM (2002) Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35(9):3456–3462
MacLellan CJ, Fuentes D, Elliott AM, Schwartz J, Hazle JD, Stafford RJ (2014) Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation. Int J Hyperth 30(1):47–55
Madsen SJ, Angell-Petersen E, Spetalen S, Carper SW, Ziegler SA, Hirschberg H (2006) Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg Med 38(5):540–548
Madsen SJ, Baek S-K, Makkouk AR, Krasieva T, Hirschberg H (2012) Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 40(2):507–515
von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900
Manuchehrabadi N, Zhu L (2014) Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int J Hyperth 30(6):349–361
Manuchehrabadi N, Attaluri A, Cai H, Edziah R, Lalanne E, Bieberich C, Ma R, Johnson AM, Zhu L (2012) MicroCT imaging and in vivo temperature elevations in implanted prostatic tumors in laser photothermal therapy using gold nanorods. J Nanotechnol Eng Med 3(2):021003
Manuchehrabadi N, Chen Y, Lebrun A, Ma R, Zhu L (2013a) Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy. J Biomech Eng 135(12):121007
Manuchehrabadi N, Toughiri R, Bieberich C, Cai H, Attaluri A, Edziah R, Lalanne E, Johnson AM, Ma R, Zhu L (2013b) Treatment efficacy of laser photothermal therapy using gold nanorods. Int J Biomed Eng Technol 12(2):157–176
Martin CR (1994) Nanomaterials – a membrane-based synthetic approach. Office of Naval Research, contract N00014-82K-0612, technical report # 96
Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739
Mercatelli R, Ratto F, Centi S, Soria S, Romano G, Matteini P, Quercioli F, Pini R, Fusi F (2013) Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope. Nanoscale 5(20):9645–9650
Meyers JD, Cheng Y, Broome A-M, Agnes RS, Schluchter MD, Margevicius S, Wang X, Kenney ME, Burda C, Basilion JP (2015) Peptide-targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact 32(4):448–457
Mie G (1908) Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 330(3):377–445
Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127(15):5312–5313
Minkowycz W, Sparrow EM, Abraham JP (2012) Nanoparticle heat transfer and fluid flow, vol 4. CRC Press, New York
Moon H, Kumar D, Kim H, Sim C, Chang J-H, Kim J-M, Kim H, Lim D-K (2015) Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging. ACS Nano 9(3):2711–2719
Mooney R, Schena E, Zhumkhawala A, Aboody KS, Berlin JM (2015) Internal temperature increase during photothermal tumour ablation in mice using gold nanorods. The 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
Moritz AR, Henriques F Jr (1947) Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 23(5):695
Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18(4):267–284
Mourant JR, Fuselier T, Boyer J, Johnson TM, Bigio IJ (1997) Predictions and measurements of scattering and absorption over broadwavelength ranges in tissue phantoms. Appl Opt 36(4):949–957
Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870
Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805
Neilson BH, Rudie EN, Dann M (1994) Method for treating interstitial tissue associated with microwave thermal therapy. US Patent US 5,330,518
Ng KC, Cheng W (2012) Fine-tuning longitudinal plasmon resonances of nanorods by thermal reshaping in aqueous media. Nanotechnology 23(10):105602
Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transf 52(25–26):5792–5795
Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347
Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17(20):6368–6374
Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962
Noh MS, Lee S, Kang H, Yang J-K, Lee H, Hwang D, Lee JW, Jeong S, Jang Y, Jun B-H, Jeong DH, Kim SK, Lee Y-S, Cho M-H (2015) Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Biomaterials 45:81–92
Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett 8(1):302–306
O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176
Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247
Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949
Pearce JA (2009) Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. In: Proceedings of SPIE 7181, energy-based treatment of tissue and assessment, volume 718104
Pearce JA (2015) Improving accuracy in Arrhenius models of cell death: adding a temperature-dependent time delay. J Biomech Eng 137(12):121006
Pennes HH (1948) Analysis of tissue and arterial blood temperature in the resting human forearm. J Appl Phys 1:93–122
Peracchia MT, Fattal E, Desmaële D, Besnard M, Noël JP, Gomis JM, Appel M, d’Angelo J, Couvreur P (1999) Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60(1):121–128
Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901
Piao DBJZ, Bartels KE, Holyoak GR, Ritchey JW, Xu G, Bunting CF, Slobodov G (2009) In vivo transrectal ultrasound coupled near-infrared optical tomography of intact normal canine prostate. J Innov Opt Health Sci 2(3):215–225
Piao DBBK, Jiang Z, Holyoak GR, Ritchey JW, Xu G, Bunting CF, Slobodov G (2010) Alternative transrectal prostate imaging: a diffuse optical tomography method. IEEE J Sel Top Quantum Electron 16(4):715–729
Pissuwan D, Valenzuela SM, Killingsworth MC, Xu X, Cortie MB (2007a) Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9(6):1109–1124
Pissuwan D, Valenzuela SM, Miller CM, Cortie MB (2007b) A golden bullet? Selective targeting of toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett 7(12):3808–3812
Qin Z, Balasubramanian SK, Wolkers WF, Pearce JA, Bischof JC (2014) Correlated parameter fit of Arrhenius model for thermal denaturation of proteins and cells. Ann Biomed Eng 42(12):2392–2404
Raaymakers B, Kotte A, Lagendijk J, Minkowycz W, Sparrow E, Abraham J (2009) Discrete vasculature (DIVA) model simulating the thermal impact of individual blood vessels for in vivo heat transfer. Adv Numer Heat Tran 3:121–148
Roberts MJ, Bentley MD, Harris JM (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 64(Suppl):116–127
Rodrigues HF, Mello FM, Branquinho LC, Zufelato N, Silveira-Lacerda EP, Bakuzis AF (2013) Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Int J Hyperth 29(8):752–767
Rudie EN, Neilson BH, Kauphusman JV (1996) Device for asymmetrical thermal therapy with helical dipole microwave antenna. US Patent 5,545,137
Ryu S, Brown SL, Kim S-H, Khil MS, Kim JH (1996) Preferential radiosensitization of human prostatic carcinoma cells by mild hyperthermia. Int J Radiat Oncol Biol Phys 34(1):133–138
Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2(10):668–671
Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800
Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667
Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57
Sherar MD, Gertner MR, Yue CK, O’Malley ME, Toi A, Gladman AS, Davidson SR, Trachtenberg J (2001) Interstitial microwave thermal therapy for prostate cancer: method of treatment and results of a phase I/II trial. J Urol 166(5):1707–1714
Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12(18):2249–2270
Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley LM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595
Sönnichsen C, Franzl T, Wilk T, Plessen GV, Feldmann J (2002) Plasmon resonances in large noble-metal clusters. New J Phys 4(1):93
Stafford RJ, Shetty A, Elliott AM, Schwartz JA, Goodrich GP, Hazle JD (2011) MR temperature imaging of nanoshell mediated laser ablation. Int J Hyperth 27(8):782–790
Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179(2):748–753
Stern JM, Kibanov Solomonov VV, Sazykina E, Schwartz JA, Gad SC, Goodrich GP (2016) Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int J Toxicol 35(1):38–46
Takahashi H, Niidome Y, Niidome T, Kaneko K, Kawasaki H, Yamada S (2006) Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22(1):2–5
Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3(3):151–157
Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19(20):3136–3141
Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32
Tuchin VV (2015) Tissue optics, light scattering methods and instruments for medical diagnostics. Spie Press Book, Bellingham
Vafai K (2015) Handbook of porous media. CRC Press, Boca Raton
Verhaart RF, Verduijn GM, Fortunati V, Rijnen Z, van Walsum T, Veenland JF, Paulides MM (2015) Accurate 3D temperature dosimetry during hyperthermia therapy by combining invasive measurements and patient-specific simulations. Int J Hyperth 31(6):686–692
Vogel A, Venugopalan V (2003) Kinetics of phase transitions in pulsed IR laser ablation of biological tissues. In: Proceedings of SPIE Vol. 4961 laser tissue interaction XIV, pp 66–74
Wang L, Jacques SL, Zheng L (1995) MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Prog Biomed 47(2):131–146
Wang B-K, Yu X-F, Wang J-H, Li Z-B, Li P-H, Wang H, Song L, Chu PK, Li C (2016) Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 78:27–39
Welch AJ, van Gemert MJC (1995) Optical-thermal response of laser-irradiated tissue. Plenum Press, New York
Werthmöller N, Frey B, Rückert M, Lotter M, Fietkau R, Gaipl US (2016) Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. Int J Hyperth 32(1):23–30
Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14(19):5396–5401
Wilson BC, Adam G (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys 10(6):824–830
Wong SL, Mangu PB, Choti MA, Crocenzi TS, Dodd GD 3rd, Dorfman GS, Eng C, Fong Y, Giusti AF, Lu D, Marsland TA, Michelson R, Poston GJ, Schrag D, Seidenfeld J, Benson AB 3rd (2010) American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 28(3):493–508
Wulff W (1974) The energy conservation equation for living tissue. IEEE Trans Biomed Eng 6(BME-21):494–495
Yang H-W, Liu H-L, Li M-L, Hsi IW, Fan C-T, Huang C-Y, Lu Y-J, Hua M-Y, Chou H-Y, Liaw J-W, Ma C-CM, Wei K-C (2013) Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34(22):5651–5660
Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939
Ye D, Wang G, Liu Y, Huang W, Wu M, Zhu S, Jia W, Deng A-M, Liu H, Kang J (2012) MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem Cells 30(8):1645–1654
Ying Y, Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664
Zaman RT, Diagaradjane P, Wang JC, Schwartz J, Rajaram N, Gill-Sharp KL, Cho SH, Rylander HG III, Payne JD, Krishnan S (2007) In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE J Sel Top Quantum Electron 13(6):1715–1720
Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936
Zhang W, Meng J, Ji Y, Li X, Kong H, Wu X, Xu H (2011) Inhibiting metastasis of breast cancer cells in vitro using gold nanorod-siRNA delivery system. Nanoscale 3(9):3923–3932
Zhang W, Ji Y, Wu X, Xu H (2013) Trafficking of gold nanorods in breast cancer cells: uptake, lysosome maturation, and elimination. ACS Appl Mater Interfaces 5(19):9856–9865
Zhang J, Li C, Zhang X, Huo S, Jin S, An F-F, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang X-J (2015) In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 42:103–111
Zhang N, Chen H, Liu A-Y, Shen J-J, Shah V, Zhang C, Hong J, Ding Y (2016a) Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–291
Zhang W, Wang F, Wang Y, Wang J, Yu Y, Guo S, Chen R, Zhou D (2016b) pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J Control Release 232:9–19
Zou YPLW, Zheng F, Li FC, Huang H, Du JD, Liu HR (2010) Intraoperative radiofrequency ablation combined with 125iodine seed implantation for unresectable pancreatic cancer. World J Gastroenterol 16(40):5104–5110
Acknowledgment
This work was supported by an NSF grant (CBET-1335958).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this entry
Cite this entry
Manuchehrabadi, N., Zhu, L. (2017). Gold Nanoparticle-Based Laser Photothermal Therapy. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_69-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-32003-8_69-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32003-8
Online ISBN: 978-3-319-32003-8
eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering