Skip to main content

Origin and Differentiation of Androgen-Producing Cells in the Gonads

  • Chapter
  • First Online:
Molecular Mechanisms of Cell Differentiation in Gonad Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 58))

Abstract

Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.

Potter and Kumar contributed equally to this work and are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abney TO, Myers RB (1991) 17 beta-estradiol inhibition of Leydig cell regeneration in the ethane dimethylsulfonate-treated mature rat. J Androl 12:295–304

    CAS  PubMed  Google Scholar 

  • Adamsson A, Simanainen U, Viluksela M, Paranko J, Toppari J (2009) The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on foetal male rat steroidogenesis. Int J Androl 32:575–585

    Article  CAS  PubMed  Google Scholar 

  • Afane M, Dubost JJ, Sauvezie B, Issoual D, Dosgilbert A, Grizard G, Boucher D (1998) Modulation of Leydig cell testosterone production by secretory products of macrophages. Andrologia 30:71–78

    Article  CAS  PubMed  Google Scholar 

  • Akingbemi BT, Youker RT, Sottas CM, Ge R, Katz E, Klinefelter GR, Zirkin BR, Hardy MP (2001) Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod 65:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP (2004) Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145:592–603

    Article  CAS  PubMed  Google Scholar 

  • Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107

    Article  CAS  PubMed  Google Scholar 

  • Andrew A, Kramer B (1979) An experimental investigation into the possible origin of pancreatic islet cells from rhombencephalic neurectoderm. J Embryol Exp Morphol 52:23–38

    CAS  PubMed  Google Scholar 

  • Andrew A, Kramer B, Rawdon BB (1998) The origin of gut and pancreatic neuroendocrine (APUD) cells-the last word? J Pathol 186:117–118

    Article  CAS  PubMed  Google Scholar 

  • Baird DT, Swanston IA, McNeilly AS (1981) Relationship between LH, FSH, and prolactin concentration and the secretion of androgens and estrogens by the preovulatory follicle in the ewe. Biol Reprod 24:1013–1025

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, O’Shaughnessy PJ (2001) Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122:227–234

    Article  CAS  PubMed  Google Scholar 

  • Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A (1996) Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol 10:903–918

    CAS  PubMed  Google Scholar 

  • Baker PJ, Pakarinen P, Huhtaniemi IT, Abel MH, Charlton HM, Kumar TR, O’Shaughnessy PJ (2003) Failure of normal Leydig cell development in follicle-stimulating hormone (FSH) receptor-deficient mice, but not FSHbeta-deficient mice: role for constitutive FSH receptor activity. Endocrinology 144:138–145

    Article  CAS  PubMed  Google Scholar 

  • Barsoum I, Yao HH (2006) The road to maleness: from testis to Wolffian duct. Trends Endocrinol Metab 17:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsoum IB, Yao HH (2010) Fetal Leydig cells: progenitor cell maintenance and differentiation. J Androl 31:11–15

    Article  CAS  PubMed  Google Scholar 

  • Bauer MP, Bridgham JT, Langenau DM, Johnson AL, Goetz FW (2000) Conservation of steroidogenic acute regulatory (StAR) protein structure and expression in vertebrates. Mol Cell Endocrinol 168:119–125

    Article  CAS  PubMed  Google Scholar 

  • Benahmed M, Reventos J, Tabone E, Saez JM (1985) Cultured Sertoli cell-mediated FSH stimulatory effect on Leydig cell steroidogenesis. Am J Physiol 248:E176–E181

    CAS  PubMed  Google Scholar 

  • Benton L, Shan LX, Hardy MP (1995) Differentiation of adult Leydig cells. J Steroid Biochem Mol Biol 53:61–68

    Article  CAS  PubMed  Google Scholar 

  • Bergh A (1982) Local differences in Leydig cell morphology in the adult rat testis: evidence for a local control of Leydig cells by adjacent seminiferous tubules. Int J Androl 5:325–330

    Article  CAS  PubMed  Google Scholar 

  • Bergh A (1983) Paracrine regulation of Leydig cells by the seminiferous tubules. Int J Androl 6:57–65

    Article  CAS  PubMed  Google Scholar 

  • Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Zhao Y, Grinberg A, Huang S, Kreidberg JA, Parker KL, Porter FD, Westphal H (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913

    Article  CAS  PubMed  Google Scholar 

  • Bott RC, Clopton DT, Fuller AM, McFee RM, Lu N, McFee RM, Cupp AS (2010) KDR-LacZ-expressing cells are involved in ovarian and testis-specific vascular development, suggesting a role for VEGFA in the regulation of this vasculature. Cell Tissue Res 342(1):117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boujrad N, Guillaumin JM, Bardos P, Hochereau De Reviers MT, Drosdowsky MA, Carreau S (1992) Germ cell-Sertoli cell interactions and production of testosterone by purified Leydig cells from mature rat. J Steroid Biochem Mol Biol 41:677–681

    Article  CAS  PubMed  Google Scholar 

  • Bouskine A, Nebout M, Brucker-Davis F, Benahmed M, Fenichel P (2009) Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. Environ Health Perspect 117:1053–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer A, Pilon N, Raiwet DL, Lussier JG, Silversides DW (2006) Human and pig SRY 5′ flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells. Dev Dyn 235(3):623–632

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Tilmann C, Capel B (2003) Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne P, Place NJ, Vidal JD, Moore IT, Cunha GR, Glickman SE, Conley AJ (2006) Endocrine differentiation of fetal ovaries and testes of the spotted hyena (Crocuta crocuta): timing of androgen-independent versus androgen-driven genital development. Reproduction 132:649–659

    Article  CAS  PubMed  Google Scholar 

  • Budefeld T, Jezek D, Rozman D, Majdic G (2009) Initiation of steroidogenesis precedes expression of cholesterologenic enzymes in the fetal mouse testes. Anat Histol Embryol 38:461–466

    Article  CAS  PubMed  Google Scholar 

  • Byskov AG (1986) Differentiation of mammalian embryonic gonad. Physiol Rev 66:71–117

    CAS  PubMed  Google Scholar 

  • Campbell BK, Baird DT, Webb R (1998) Effects of dose of LH on androgen production and luteinization of ovine theca cells cultured in a serum-free system. J Reprod Fertil 112:69–77

    Article  CAS  PubMed  Google Scholar 

  • Canto P, Soderlund D, Reyes E, Mendez JP (2004) Mutations in the desert hedgehog (DHH) gene in patients with 46, XY complete pure gonadal dysgenesis. J Clin Endocrinol Metab 89:4480–4483

    Article  CAS  PubMed  Google Scholar 

  • Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84:127–131

    Article  CAS  PubMed  Google Scholar 

  • Carreau S (1996) Paracrine control of human Leydig cell and Sertoli cell functions. Folia Histochem Cytobiol 34:111–119

    CAS  PubMed  Google Scholar 

  • Carreau S, De Vienne C, Galeraud-Denis I (2008) Aromatase and estrogens in man reproduction: a review and latest advances. Adv Med Sci 53:139–144

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hardy MP, Huhtaniemi I, Zirkin BR (1994) Age-related decreased Leydig cell testosterone production in the brown Norway rat. J Androl 15:551–557

    CAS  PubMed  Google Scholar 

  • Chen JJ, Lukyanenko Y, Hutson JC (2002) 25-hydroxycholesterol is produced by testicular macrophages during the early postnatal period and influences differentiation of Leydig cells in vitro. Biol Reprod 66:1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Irizarry RA, Luo L, Zirkin BR (2004) Leydig cell gene expression: effects of age and caloric restriction. Exp Gerontol 39:31–43

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ge RS, Zirkin BR (2009) Leydig cells: from stem cells to aging. Mol Cell Endocrinol 306:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Stanley E, Jin S, Zirkin BR (2010) Stem Leydig cells: from fetal to aged animals. Birth Defects Res C Embryo Today 90:272–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen AK, Gillim SW (1969) The correlation of fine structure and function in steroid-secreting cells, with emphasis on those of the gonads. In: Mckerns KW (ed) The gonads. Appleton-Century-Crofts, New York

    Google Scholar 

  • Clark BJ, Wells J, King SR, Stocco DM (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269:28314–28322

    CAS  PubMed  Google Scholar 

  • Clark AM, Garland KK, Russell LD (2000) Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63:1825–1838

    Article  CAS  PubMed  Google Scholar 

  • Cohen PE, Hardy MP, Pollard JW (1997) Colony-stimulating factor-1 plays a major role in the development of reproductive function in male mice. Mol Endocrinol 11:1636–1650

    Article  CAS  PubMed  Google Scholar 

  • Collin O, Bergh A (1996) Leydig cells secrete factors which increase vascular permeability and endothelial cell proliferation. Int J Androl 19:221–228

    Article  CAS  PubMed  Google Scholar 

  • Combes AN, Wilhelm D, Davidson T, Dejana E, Harley V, Sinclair A, Koopman P (2009) Endothelial cell migration directs testis cord formation. Dev Biol 326:112–120

    Article  CAS  PubMed  Google Scholar 

  • Cool J, Carmona FD, Szucsik JC, Capel B (2008) Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui S, Ross A, Stallings N, Parker KL, Capel B, Quaggin SE (2004) Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131:4095–4105

    Article  CAS  PubMed  Google Scholar 

  • Davidoff MS, Middendorff R, Kofuncu E, Muller D, Jezek D, Holstein AF (2002) Leydig cells of the human testis possess astrocyte and oligodendrocyte marker molecules. Acta Histochem 104:39–49

    Article  CAS  PubMed  Google Scholar 

  • Davidoff MS, Middendorff R, Enikolopov G, Riethmacher D, Holstein AF, Muller D (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167:935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidoff MS, Middendorff R, Muller D, Holstein AF (2009) The neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. Adv Anat Embryol Cell Biol 205:1–107

    Article  PubMed  Google Scholar 

  • DeFalco T, Takahashi S, Capel B (2011) Two distinct origins for Leydig cell progenitors in the fetal testis. Dev Biol 352:14–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFalco T, Saraswathula A, Briot A, Iruela-Arispe ML, Capel B (2013) Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod 88:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeFalco T, Bhattacharya I, Williams AV, Sams DM, Capel B (2014) Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A 111:E2384–E2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFalco T, Potter SJ, Williams AV, Waller B, Kan MJ, Capel B (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12(7):1107–1119

    Article  CAS  PubMed  Google Scholar 

  • Desjardins C, Ewing LL, Johnson BH (1971) Effects of light deprivation upon the spermatogenic and steroidogenic elements of hamster testes. Endocrinology 89:791–800

    Article  CAS  PubMed  Google Scholar 

  • Dloniak SM, French JA, Holekamp KE (2006) Rank-related maternal effects of androgens on behaviour in wild spotted hyaenas. Nature 440:1190–1193

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  CAS  PubMed  Google Scholar 

  • Enangue Njembele AN, Bailey JL, Tremblay JJ (2014) In vitro exposure of Leydig cells to an environmentally relevant mixture of organochlorines represses early steps of steroidogenesis. Biol Reprod 90:118

    Article  PubMed  CAS  Google Scholar 

  • Ergun S, Stingl J, Holstein AF (1994) Microvasculature of the human testis in correlation to Leydig cells and seminiferous tubules. Andrologia 26:255–262

    Article  CAS  PubMed  Google Scholar 

  • Eshkol A, Lunenfeld B (1972) Gonadotropic regulation of ovarian development in mice during infancy. In: Saxena BB, Boling O, Gandy HM (eds) Gonadotropins. Wiley Interscience, New York

    Google Scholar 

  • Forest MG, Cathiard AM, Bertrand JA (1973) Evidence of testicular activity in early infancy. J Clin Endocrinol Metab 37:148–151

    Article  CAS  PubMed  Google Scholar 

  • Fortune JE, Armstrong DT (1977) Androgen production by theca and granulosa isolated from proestrous rat follicles. Endocrinology 100:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Gaskell TL, Robinson LL, Groome NP, Anderson RA, Saunders PT (2003) Differential expression of two estrogen receptor beta isoforms in the human fetal testis during the second trimester of pregnancy. J Clin Endocrinol Metab 88:424–432

    Article  CAS  PubMed  Google Scholar 

  • Gaytan F, Bellido C, Aguilar E, Van Rooijen N (1994a) Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102:393–399

    Article  CAS  PubMed  Google Scholar 

  • Gaytan F, Bellido C, Morales C, Reymundo C, Aguilar E, Van Rooijen N (1994b) Effects of macrophage depletion at different times after treatment with ethylene dimethane sulfonate (EDS) on the regeneration of Leydig cells in the adult rat. J Androl 15:558–564

    CAS  PubMed  Google Scholar 

  • Gaytan F, Bellido C, Morales C, Reymundo C, Aguilar E, Van Rooijen N (1994c) Selective depletion of testicular macrophages and prevention of Leydig cell repopulation after treatment with ethylene dimethane sulfonate in rats. J Reprod Fertil 101:175–182

    Article  CAS  PubMed  Google Scholar 

  • Ge RS, Hardy MP (1998) Variation in the end products of androgen biosynthesis and metabolism during postnatal differentiation of rat Leydig cells. Endocrinology 139:3787–3795

    CAS  PubMed  Google Scholar 

  • Ge RS, Dong Q, Sottas CM, Papadopoulos V, Zirkin BR, Hardy MP (2006) In search of rat stem Leydig cells: identification, isolation, and lineage-specific development. Proc Natl Acad Sci U S A 103:2719–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelber SJ, Hardy MP, Mendis-Handagama SM, Casella SJ (1992) Effects of insulin-like growth factor-I on androgen production by highly purified pubertal and adult rat Leydig cells. J Androl 13:125–130

    CAS  PubMed  Google Scholar 

  • Gilep AA, Sushko TA, Usanov SA (2011) At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. Biochim Biophys Acta 1814:200–209

    Article  CAS  PubMed  Google Scholar 

  • Griswold SL, Behringer RR (2009) Fetal Leydig cell origin and development. Sex Dev 3:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Deng H, Li H, Zhu Q, Zhao B, Chen B, Chu Y, Ge RS (2013) Effects of methoxychlor and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on 11beta-hydroxysteroid dehydrogenase activities in vitro. Toxicol Lett 218:18–23

    Article  CAS  PubMed  Google Scholar 

  • Haider SG, Laue D, Schwochau G, Hilscher B (1995) Morphological studies on the origin of adult-type Leydig cells in rat testis. Ital J Anat Embryol 100(Suppl 1):535–541

    PubMed  Google Scholar 

  • Hales DB (2002) Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 57:3–18

    Article  CAS  PubMed  Google Scholar 

  • Hardy MP, Mendis-Handagama SM, Zirkin BR, Ewing LL (1987) Photoperiodic variation of Leydig cell numbers in the testis of the golden hamster: a possible mechanism for their renewal during recrudescence. J Exp Zool 244:269–276

    Article  CAS  PubMed  Google Scholar 

  • Hardy MP, Zirkin BR, Ewing LL (1989) Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology 124:762–770

    Article  CAS  PubMed  Google Scholar 

  • Hardy MP, Kelce WR, Klinefelter GR, Ewing LL (1990) Differentiation of Leydig cell precursors in vitro: a role for androgen. Endocrinology 127:488–490

    Article  CAS  PubMed  Google Scholar 

  • Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 86:724–731

    Article  CAS  PubMed  Google Scholar 

  • Hazra R, Jimenez M, Desai R, Handelsman DJ, Allan CM (2013) Sertoli cell androgen receptor expression regulates temporal fetal and adult Leydig cell differentiation, function, and population size. Endocrinology 154:3410–3422

    Article  CAS  PubMed  Google Scholar 

  • Hess RA (2003) Estrogen in the adult male reproductive tract: a review. Reprod Biol Endocrinol 1:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Himelstein-Braw R, Byskov AG, Peters H, Faber M (1976) Follicular atresia in the infant human ovary. J Reprod Fertil 46:55–59

    Article  CAS  PubMed  Google Scholar 

  • Hsueh AJ, Dahl KD, Vaughan J, Tucker E, Rivier J, Bardin CW, Vale W (1987) Heterodimers and homodimers of inhibin subunits have different paracrine action in the modulation of luteinizing hormone-stimulated androgen biosynthesis. Proc Natl Acad Sci U S A 84:5082–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu GX, Lian QQ, Ge RS, Hardy DO, Li XK (2009) Phthalate-induced testicular dysgenesis syndrome: Leydig cell influence. Trends Endocrinol Metab 20:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu GX, Lin H, Chen GR, Chen BB, Lian QQ, Hardy DO, Zirkin BR, Ge RS (2010) Deletion of the Igf1 gene: suppressive effects on adult Leydig cell development. J Androl 31:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu GX, Zhao B, Chu Y, Li XH, Akingbemi BT, Zheng ZQ, Ge RS (2011) Effects of methoxychlor and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane on 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase-3 activities in human and rat testes. Int J Androl 34:138–144

    Article  CAS  PubMed  Google Scholar 

  • Huber K (2006) The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298:335–343

    Article  CAS  PubMed  Google Scholar 

  • Hum DW, Miller WL (1993) Transcriptional regulation of human genes for steroidogenic enzymes. Clin Chem 39:333–340

    CAS  PubMed  Google Scholar 

  • Hutson JC (1992) Development of cytoplasmic digitations between Leydig cells and testicular macrophages of the rat. Cell Tissue Res 267:385–389

    Article  CAS  PubMed  Google Scholar 

  • Hutson JC (1998) Interactions between testicular macrophages and Leydig cells. J Androl 19:394–398

    CAS  PubMed  Google Scholar 

  • Jiang MH, Cai B, Tuo Y, Wang J, Zang ZJ, Tu X, Gao Y, Su Z, Li W, Li G, Zhang M, Jiao J, Wan Z, Deng C, Lahn BT, Xiang AP (2014) Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res 24:1466–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez R, Burgos M, Sanchez A, Sinclair AH, Alarcon FJ, Marin JJ, Ortega E, Diaz De La Guardia R (1993) Fertile females of the mole Talpa occidentalis are phenotypic intersexes with ovotestes. Development 118:1303–1311

    CAS  PubMed  Google Scholar 

  • Johnson L, Nguyen HB (1986) Annual cycle of the Sertoli cell population in adult stallions. J Reprod Fertil 76:311–316

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Thompson DL Jr (1986) Seasonal variation in the total volume of Leydig cells in stallions is explained by variation in cell number rather than cell size. Biol Reprod 35:971–979

    Article  CAS  PubMed  Google Scholar 

  • Johnson L, Wilker CE, Safe SH, Scott B, Dean DD, White PH (1994) 2,3,7,8-Tetrachlorodibenzo-p-dioxin reduces the number, size, and organelle content of Leydig cells in adult rat testes. Toxicology 89:49–65

    Article  CAS  PubMed  Google Scholar 

  • Johnson KJ, Heger NE, Boekelheide K (2012) Of mice and men (and rats): phthalate-induced fetal testis endocrine disruption is species-dependent. Toxicol Sci 129:235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HB, Garside DA, Liu R, Roberts JC (1993) The influence of phthalate esters on Leydig cell structure and function in vitro and in vivo. Exp Mol Pathol 58:179–193

    Article  CAS  PubMed  Google Scholar 

  • Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203:323–333

    Article  CAS  PubMed  Google Scholar 

  • Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, Mckinnell C, Van Den Driesche S, Jobling MS, Chambers TJ, De Gendt K, Verhoeven G, O’Hara L, Platts S, Renato De Franca L, Lara NL, Anderson RA, Sharpe RM (2014) Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 111:E1924–E1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King SR, Lavoie HA (2009) Regulation of the early steps in gonadal steroidogenesis. In: Chedrese PJ (ed) Reproductive endocrinology: a molecular approach. Springer, New York

    Google Scholar 

  • Kirchgessner AL, Adlersberg MA, Gershon MD (1992) Colonization of the developing pancreas by neural precursors from the bowel. Dev Dyn 194:142–154

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369

    Article  CAS  PubMed  Google Scholar 

  • Kotsuji F, Kamitani N, Goto K, Tominaga T (1990) Bovine theca and granulosa cell interactions modulate their growth, morphology, and function. Biol Reprod 43:726–732

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy H, Kats R, Danilovich N, Javeshghani D, Sairam MR (2001) Intercellular communication between Sertoli cells and Leydig cells in the absence of follicle-stimulating hormone-receptor signaling. Biol Reprod 65:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Lai KP, Wong MH, Wong CK (2005) Inhibition of CYP450scc expression in dioxin-exposed rat Leydig cells. J Endocrinol 185:519–527

    Article  CAS  PubMed  Google Scholar 

  • Laskey JW, Phelps PV (1991) Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production. Toxicol Appl Pharmacol 108:296–306

    Article  CAS  PubMed  Google Scholar 

  • Laslett AL, McFarlane JR, Risbridger GP (1997) Developmental response by Leydig cells to acidic and basic fibroblast growth factor. J Steroid Biochem Mol Biol 60:171–179

    Article  CAS  PubMed  Google Scholar 

  • Li MA, Alls JD, Avancini RM, Koo K, Godt D (2003) The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5(11):994–1000

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Blaisdell J, Haskell JF (1987) Transforming growth factor-beta inhibits Leydig cell steroidogenesis in primary culture. Biochem Biophys Res Commun 146:387–394

    Article  CAS  PubMed  Google Scholar 

  • Lin YM, Tsai CC, Chung CL, Chen PR, Sun HS, Tsai SJ, Huang BM (2010) Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int J Androl 33:545–553

    Article  CAS  PubMed  Google Scholar 

  • Lindeque M, Skinner JD (1982) Fetal androgens and sexual mimicry in spotted hyaenas (Crocuta crocuta). J Reprod Fertil 65:405–410

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang Y, Zhang L, Liang R, Ge RS, Zhang Y, Zhang Q, Xiang Q, Huang Y, Su Z (2014) Basic fibroblast growth factor promotes stem Leydig cell development and inhibits LH-stimulated androgen production by regulating microRNA expression. J Steroid Biochem Mol Biol 144(Pt B):483–491

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Peng J, Matzuk MM, Yao HH (2015) Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun 6:6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobo MV, Arenas MI, Alonso FJ, Gomez G, Bazan E, Paino CL, Fernandez E, Fraile B, Paniagua R, Moyano A, Caso E (2004) Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res 316:369–376

    Article  CAS  PubMed  Google Scholar 

  • Loh HS, Gemmell RT (1980) Changes in the fine structure of the testicular Leydig cells of the seasonally-breeding bat, Myotis adversus. Cell Tissue Res 210:339–347

    Article  CAS  PubMed  Google Scholar 

  • Lukyanenko YO, Carpenter AM, Brigham DE, Stocco DM, Hutson JC (1998) Regulation of Leydig cells through a steroidogenic acute regulatory protein-independent pathway by a lipophilic factor from macrophages. J Endocrinol 158:267–275

    Article  CAS  PubMed  Google Scholar 

  • Lukyanenko YO, Chen JJ, Hutson JC (2001) Production of 25-hydroxycholesterol by testicular macrophages and its effects on Leydig cells. Biol Reprod 64:790–796

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Schlosser DA, Parker KL (1995) Steroidogenic factor 1 is the essential transcript of the mouse Ftz-F1 gene. Mol Endocrinol 9:1233–1239

    CAS  PubMed  Google Scholar 

  • Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cell Biol 37:1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Mannan MA, O’Shaughnessy PJ (1991) Steroidogenesis during postnatal development in the mouse ovary. J Endocrinol 130:101–106

    Article  CAS  PubMed  Google Scholar 

  • Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997) Male-specific cell migration into the developing gonad. Curr Biol 7:958–968

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer A, Lahr G, Seidl K, Eusterschulte B, Christoph A, Gratzl M (1996) The neural cell adhesion molecule (NCAM) provides clues to the development of testicular Leydig cells. J Androl 17:223–230

    CAS  PubMed  Google Scholar 

  • McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, De Kretser DM, Pratis K, Robertson DM (2002) Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res 57:149–179

    Article  CAS  PubMed  Google Scholar 

  • Meeks JJ, Crawford SE, Russell TA, Morohashi K, Weiss J, Jameson JL (2003) Dax1 regulates testis cord organization during gonadal differentiation. Development 130:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE (2005) Androgens regulate the permeability of the blood-tests barrier. Proc Natl Acad Sci U S A 102:16696–16700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant-Larios H, Moreno-Mendoza N, Buehr M (1993) The role of the mesonephros in cell differentiation and morphogenesis of the mouse fetal testis. Int J Dev Biol 37:407–415

    CAS  PubMed  Google Scholar 

  • Middendorff R, Davidoff M, Holstein AF (1993) Neuroendocrine marker substances in human Leydig cells—changes by disturbances of testicular function. Andrologia 25:257–262

    Article  CAS  PubMed  Google Scholar 

  • Migrenne S, Pairault C, Racine C, Livera G, Geloso A, Habert R (2001) Luteinizing hormone-dependent activity and luteinizing hormone-independent differentiation of rat fetal Leydig cells. Mol Cell Endocrinol 172:193–202

    Article  CAS  PubMed  Google Scholar 

  • Millena AC, Reddy SC, Bowling GH, Khan SA (2004) Autocrine regulation of steroidogenic function of Leydig cells by transforming growth factor-alpha. Mol Cell Endocrinol 224:29–39

    Article  CAS  PubMed  Google Scholar 

  • Miller SC, Bowman BM, Rowland HG (1983) Structure, cytochemistry, endocytic activity, and immunoglobulin (Fc) receptors of rat testicular interstitial-tissue macrophages. Am J Anat 168:1–13

    Article  CAS  PubMed  Google Scholar 

  • Miyabayashi K, Katoh-Fukui Y, Ogawa H, Baba T, Shima Y, Sugiyama N, Kitamura K, Morohashi K (2013) Aristaless related homeobox gene, Arx, is implicated in mouse fetal Leydig cell differentiation possibly through expressing in the progenitor cells. PLoS One 8:e68050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RW, Jefcoate CR, Peterson RE (1991) 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits steroidogenesis in the rat testis by inhibiting the mobilization of cholesterol to cytochrome P450scc. Toxicol Appl Pharmacol 109:85–97

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Fukunishi R, Fujii M, Hataji K, Shiraishi T, Matsumoto K (1978) Stereological analysis of Reinke’s crystals in human Leydig cells. Virchows Arch A Pathol Anat Histol 380:1–9

    CAS  PubMed  Google Scholar 

  • Mori H, Hiromoto N, Nakahara M, Shiraishi T (1982) Stereological analysis of Leydig cell ultrastructure in aged humans. J Clin Endocrinol Metab 55:634–641

    Article  CAS  PubMed  Google Scholar 

  • Murono EP, Derk RC, Akgul Y (2006) In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity. Reprod Toxicol 21:148–153

    Article  CAS  PubMed  Google Scholar 

  • Nashev LG, Schuster D, Laggner C, Sodha S, Langer T, Wolber G, Odermatt A (2010) The UV-filter benzophenone-1 inhibits 17beta-hydroxysteroid dehydrogenase type 3: virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochem Pharmacol 79:1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Neaves WB, Johnson L, Porter JC, Parker CR Jr, Petty CS (1984) Leydig cell numbers, daily sperm production, and serum gonadotropin levels in aging men. J Clin Endocrinol Metab 59:756–763

    Article  CAS  PubMed  Google Scholar 

  • Neaves WB, Johnson L, Petty CS (1985) Age-related change in numbers of other interstitial cells in testes of adult men: evidence bearing on the fate of Leydig cells lost with increasing age. Biol Reprod 33:259–269

    Article  CAS  PubMed  Google Scholar 

  • Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D, Parada LF (2003) Testis determination requires insulin receptor family function in mice. Nature 426(6964):291–295

    Article  CAS  PubMed  Google Scholar 

  • Nes WD, Lukyanenko YO, Jia ZH, Quideau S, Howald WN, Pratum TK, West RR, Hutson JC (2000) Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology 141:953–958

    CAS  PubMed  Google Scholar 

  • Nishimura W, Bonner-Weir S, Sharma A (2009) Expression of MafA in pancreatic progenitors is detrimental for pancreatic development. Dev Biol 333:108–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris DO, Carr JA (2013) Vertebrate endocrinology. Academic (Elsevier), China

    Google Scholar 

  • N’tumba-Byn T, Moison D, Lacroix M, Lecureuil C, Lesage L, Prud’homme SM, Pozzi-Gaudin S, Frydman R, Benachi A, Livera G, Rouiller-Fabre V, Habert R (2012) Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function. PLoS One 7:e51579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shaughnessy PJ, Baker P, Sohnius U, Haavisto AM, Charlton HM, Huhtaniemi I (1998) Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinology 139:1141–1146

    Article  PubMed  Google Scholar 

  • O’Shaughnessy PJ, Johnston H, Willerton L, Baker PJ (2002) Failure of normal adult Leydig cell development in androgen-receptor-deficient mice. J Cell Sci 115:3491–3496

    PubMed  Google Scholar 

  • O’Shaughnessy PJ, Baker PJ, Johnston H (2006) The foetal Leydig cell—differentiation, function and regulation. Int J Androl 29:90–95

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy PJ, Hu L, Baker PJ (2008) Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction 135:839–850

    Article  PubMed  CAS  Google Scholar 

  • Orth JM (1982) Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 203:485–492

    Article  CAS  PubMed  Google Scholar 

  • Palermo R (2007) Differential actions of FSH and LH during folliculogenesis. Reprod Biomed Online 15:326–337

    Article  CAS  PubMed  Google Scholar 

  • Paniagua R, Amat P, Nistal M, Martin A (1986) Ultrastructure of Leydig cells in human ageing testes. J Anat 146:173–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Tong M, Jameson JL (2007) Distinct roles for steroidogenic factor 1 and desert hedgehog pathways in fetal and adult Leydig cell development. Endocrinology 148:3704–3710

    Article  CAS  PubMed  Google Scholar 

  • Parrott JA, Skinner MK (1997) Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology 138:3819–3827

    CAS  PubMed  Google Scholar 

  • Payne A, Hardy M (2007) The Leydig cell in health and disease. Humana, Totowa, NJ

    Book  Google Scholar 

  • Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13:1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters H (1969) The development of the mouse ovary from birth to maturity. Acta Endocrinol (Copenh) 62:98–116

    CAS  Google Scholar 

  • Pictet RL, Rall LB, Phelps P, Rutter WJ (1976) The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science 191:191–192

    Article  CAS  PubMed  Google Scholar 

  • Pilon N, Raiwet D, Viger RS, Silversides DW (2008) Novel pre- and post-gastrulation expression of Gata4 within cells of the inner cell mass and migratory neural crest cells. Dev Dyn 237(4):1133–1143

    Article  CAS  PubMed  Google Scholar 

  • Pitetti JL, Calvel P, Romero Y, Conne B, Truong V, Papaioannou MD, Schaad O, Docquier M, Herrera PL, Wilhelm D, Nef S (2013) Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet 9(1):e1003160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince FP (1990) Ultrastructural evidence of mature Leydig cells and Leydig cell regression in the neonatal human testis. Anat Rec 228:405–417

    Article  CAS  PubMed  Google Scholar 

  • Prince FP (2001) The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J Endocrinol 168:213–216

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Tsai MJ, Tsai SY (2008) Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS One 3:e3285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rastetter RH, Bernard P, Palmer JS, Chassot AA, Chen H, Western PS, Ramsay RG, Chaboissier MC, Wilhelm D (2014) Marker genes identify three somatic cell types in the fetal mouse ovary. Dev Biol 394:242–252

    Article  CAS  PubMed  Google Scholar 

  • Rebourcet D, O’Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L, Jeffrey N, Guillou F, Freeman TC, Mitchell RT, Smith LB (2014a) Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS One 9:e105687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebourcet D, O’Shaughnessy PJ, Pitetti JL, Monteiro A, O’Hara L, Milne L, Tsai YT, Cruickshanks L, Riethmacher D, Guillou F, Mitchell RT, Van’t Hof R, Freeman TC, Nef S, Smith LB (2014b) Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 141:2139–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes FI, Boroditsky RS, Winter JS, Faiman C (1974) Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J Clin Endocrinol Metab 38:612–617

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Sosa JR, Bondareva A, Tang L, Avelar GF, Coyle KM, Modelski M, Alpaugh W, Conley A, Wynne-Edwards K, Franca LR, Meyers S, Dobrinski I (2014) Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice. Mol Cell Endocrinol 398:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan KE, Glister C, Lonergan P, Martin F, Knight PG, Evans AC (2008) Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles: in vitro and in vivo studies in cattle and sheep. J Ovarian Res 1:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savchuk I, Soder O, Svechnikov K (2013) Mouse leydig cells with different androgen production potential are resistant to estrogenic stimuli but responsive to bisphenol a which attenuates testosterone metabolism. PLoS One 8:e71722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savchuk I, Soder O, Svechnikov K (2015) Mono-2-ethylhexyl phthalate stimulates androgen production but suppresses mitochondrial function in mouse leydig cells with different steroidogenic potential. Toxicol Sci 145:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawetawan C, Milewich L, Word RA, Carr BR, Rainey WE (1994) Compartmentalization of type I 17 beta-hydroxysteroid oxidoreductase in the human ovary. Mol Cell Endocrinol 99:161–168

    Article  CAS  PubMed  Google Scholar 

  • Setchell BP, Rommerts FF (1985) The importance of the Leydig cells in the vascular response to hCG in the rat testis. Int J Androl 8:436–440

    Article  CAS  PubMed  Google Scholar 

  • Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, Matsuzaki S, Shishido Y, Akiyama H, Tachibana T, Tsutsui K, Morohashi K (2013) Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27:63–73

    Article  CAS  PubMed  Google Scholar 

  • Snyder PJ, Peachey H, Berlin JA, Hannoush P, Haddad G, Dlewati A, Santanna J, Loh L, Lenrow DA, Holmes JH, Kapoor SC, Atkinson LE, Strom BL (2000) Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab 85:2670–2677

    CAS  PubMed  Google Scholar 

  • Sordoillet C, Savona C, Chauvin MA, De Peretti E, Feige JJ, Morera AM, Benahmed M (1992) Basic fibroblast growth factor enhances testosterone secretion in cultured porcine Leydig cells: site(s) of action. Mol Cell Endocrinol 89:163–171

    Article  CAS  PubMed  Google Scholar 

  • Sprando RL, Zirkin BR (1997) Is Leydig cell steroidogenic function affected by the germ cell content of the seminiferous tubules? J Androl 18:424–430

    CAS  PubMed  Google Scholar 

  • Stanley EL, Johnston DS, Fan J, Papadopoulos V, Chen H, Ge RS, Zirkin BR, Jelinsky SA (2011) Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells. Biol Reprod 85:1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss L, Kallio J, Desai N, Pakarinen P, Miettinen T, Gylling H, Albrecht M, Makela S, Mayerhofer A, Poutanen M (2009) Increased exposure to estrogens disturbs maturation, steroidogenesis, and cholesterol homeostasis via estrogen receptor alpha in adult mouse Leydig cells. Endocrinology 150:2865–2872

    Article  CAS  PubMed  Google Scholar 

  • Suzuki F, Racey PA (1978) The organization of testicular interstitial tissue and changes in the fine structure of the Leydig cells of European moles (Talpa europaea) throughout the year. J Reprod Fertil 52:189–194

    Article  CAS  PubMed  Google Scholar 

  • Svechnikov K, Izzo G, Landreh L, Weisser J, Soder O (2010) Endocrine disruptors and Leydig cell function. J Biomed Biotechnol. doi:10.1155/2010/684504

    PubMed  PubMed Central  Google Scholar 

  • Tajima K, Orisaka M, Mori T, Kotsuji F (2007) Ovarian theca cells in follicular function. Reprod Biomed Online 15:591–609

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008) Notch signaling maintains Leydig progenitor cells in the mouse testis. Development 135:3745–3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teerds KJ, De Rooij DG, Rommerts FF, Van Der Tweel I, Wensing CJ (1989) Turnover time of Leydig cells and other interstitial cells in testes of adult rats. Arch Androl 23:105–111

    Article  CAS  PubMed  Google Scholar 

  • Tilmann C, Capel B (1999) Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126:2883–2890

    CAS  PubMed  Google Scholar 

  • Tomiyama H, Hutson JM, Truong A, Agoulnik AI (2003) Transabdominal testicular descent is disrupted in mice with deletion of insulinlike factor 3 receptor. J Pediatr Surg 38:1793–1798

    Article  PubMed  Google Scholar 

  • Tsai SY, Tsai MJ (1997) Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr Rev 18:229–240

    PubMed  Google Scholar 

  • Umehara F, Tate G, Itoh K, Yamaguchi N, Douchi T, Mitsuya T, Osame M (2000) A novel mutation of desert hedgehog in a patient with 46, XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am J Hum Genet 67:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Driesche S, Walker M, McKinnell C, Scott HM, Eddie SL, Mitchell RT, Seckl JR, Drake AJ, Smith LB, Anderson RA, Sharpe RM (2012) Proposed role for COUP-TFII in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to masculinization disorders in rodents. PLoS One 7:e37064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker WH (2011) Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 1:116–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh LP, Stocco DM (2000) Effects of lindane on steroidogenesis and steroidogenic acute regulatory protein expression. Biol Reprod 63:1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Walsh LP, McCormick C, Martin C, Stocco DM (2000a) Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ Health Perspect 108:769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh LP, Webster DR, Stocco DM (2000b) Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. J Endocrinol 167:253–263

    Article  CAS  PubMed  Google Scholar 

  • Watson ME, Newman RJ, Payne AM, Abdelrahim M, Francis GL (1994) The effect of macrophage conditioned media on Leydig cell function. Ann Clin Lab Sci 24:84–95

    CAS  PubMed  Google Scholar 

  • Welsh M, Moffat L, Belling K, De Franca LR, Segatelli TM, Saunders PT, Sharpe RM, Smith LB (2012) Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells. Int J Androl 35:25–40

    Article  CAS  PubMed  Google Scholar 

  • Wright WW, Fiore C, Zirkin BR (1993) The effect of aging on the seminiferous epithelium of the brown Norway rat. J Androl 14:110–117

    CAS  PubMed  Google Scholar 

  • Yang Y, Su Z, Xu W, Luo J, Liang R, Xiang Q, Zhang Q, Ge RS, Huang Y (2015) Directed mouse embryonic stem cells into leydig-like cells rescue testosterone-deficient male rats in vivo. Stem Cells Dev 24:459–470

    Article  CAS  PubMed  Google Scholar 

  • Yao HH, Whoriskey W, Capel B (2002) Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16:1433–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee JB, Hutson JC (1985) Effects of testicular macrophage-conditioned medium on Leydig cells in culture. Endocrinology 116:2682–2684

    Article  CAS  PubMed  Google Scholar 

  • Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504

    Article  CAS  PubMed  Google Scholar 

  • Zirkin BR, Chen H (2000) Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 63:977–981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Haolin Chen and Barry Zirkin for permission to use a figure from their previous publication (Chen et al. 2009) in Molecular and Cellular Endocrinology. This work was supported by Cincinnati Children’s Hospital Medical Center (CCHMC) developmental funds, a CCHMC Trustee Award, and a March of Dimes Basil O’Connor Starter Scholar Award (#5-FY14-32) to T.D.; S.J.P. was supported by a CancerFree KIDS Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony DeFalco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Potter, S.J., Kumar, D.L., DeFalco, T. (2016). Origin and Differentiation of Androgen-Producing Cells in the Gonads. In: Piprek, R. (eds) Molecular Mechanisms of Cell Differentiation in Gonad Development. Results and Problems in Cell Differentiation, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-31973-5_5

Download citation

Publish with us

Policies and ethics