Skip to main content

Coral Scaffolds in Bone Tissue Engineering and Bone Regeneration

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

Coral exoskeleton, which consists of CaCO3 and has an interconnected-pore structure that resembles that of natural human bone, has been used as scaffold material to fill bone defects in both animal models and humans since the early 1970s. This natural material is biocompatible, osteoconductive, and biodegradable. Most importantly, the possibility of seeding coral scaffolds with either stem cells or loading them with growth factors has provided novel alternatives for bone tissue engineering. In vitro studies have demonstrated that (1) seeded cells adhered and proliferated in a time-dependent manner, and (2) loaded growth factors were absorbed on coral scaffold and subsequently released. Moreover, when coral scaffolds containing either cells and/or growth factors were implanted in vivo, a significantly increased amount of newly-formed bone was observed. Most importantly, timely resorption of the scaffold material in vivo was associated with full bone regeneration in a clinically-relevant sheep model of bone defect. Although sometimes inconsistent, such outcomes provided evidence that bone regeneration, which matches, and even supersedes, the efficacy of autologous bone graft, is achievable with coral scaffolds.

Use of coral scaffolds for bone tissue regeneration purposes is thus an appealing strategy for the following reasons: (1) these materials are biocompatible and bioresorbable; (2) have three-dimensional structure and porosity; (3) have material surface chemistry which promotes stem cell differentiation and function of differentiated cells which are pertinent to new tissue formation; and (4) they can be used as carriers for growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Al-Salihi KA (2009) In vitro evaluation of Malaysian natural coral Porites bone graft substitutes (CORAGRAF) for bone tissue engineering: a preliminary study. Braz J Oral Sci 8(4):210–216

    Google Scholar 

  • Al-Salihi KA, Samsudin AR (2004) Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant. Med J Malaysia 59(Suppl B):45–46

    PubMed  Google Scholar 

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaud E, Morieux C, Wybier M, de Vernejoul MC (1994) Potentiation of transforming growth factor (TGF-beta 1) by natural coral and fibrin in a rabbit cranioplasty model. Calcif Tissue Int 54(6):493–498

    Article  CAS  PubMed  Google Scholar 

  • Arnaud E, Molina F, Mendoza M, Fuente del Campo A, Ortiz-Monasterio F (1998) Bone substitute with growth factor. Preliminary clinical cases for cranio– and maxillo-facial indications. Ann Chir Plast Esthet 43(1):40–50

    CAS  PubMed  Google Scholar 

  • Arnaud E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H (1999) Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 20(20):1909–1918

    Article  CAS  PubMed  Google Scholar 

  • Aryal R, Chen XP, Fang C, Hu YC (2014) Bone morphogenetic protein-2 and vascular endothelial growth factor in bone tissue regeneration: new insight and perspectives. Orthop Surg 6(3):171–178

    Article  PubMed  Google Scholar 

  • Becquart P, Cambon-Binder A, Monfoulet LE, Bourguignon M, Vandamme K, Bensidhoum M, Petite H, Logeart-Avramoglou D (2012) Ischemia is the prime but not the only cause of human multipotent stromal cell death in tissue-engineered constructs in vivo. Tissue Eng Part A 18(19–20):2084–2094

    Article  CAS  PubMed  Google Scholar 

  • Bensaid W, Oudina K, Viateau V, Potier E, Bousson V, Blanchat C, Sedel L, Guillemin G, Petite H (2005) De novo reconstruction of functional bone by tissue engineering in the metatarsal sheep model. Tissue Eng 11(5–6):814–824

    Article  CAS  PubMed  Google Scholar 

  • Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJ (2000) Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma 48(1):179–186

    Article  CAS  PubMed  Google Scholar 

  • Boden SD, Schimandle JH, Hutton WC (1995a) 1995 Volvo award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: study of dose, carrier, and species. Spine (Phila Pa 1976) 20(24):2633–2644

    Article  CAS  Google Scholar 

  • Boden SD, Schimandle JH, Hutton WC, Chen MI (1995b) 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part I: Biol Spinal Fus Spine (Phila Pa 1976) 20(24):2626–2632

    CAS  Google Scholar 

  • Boden SD, Schimandle JH, Hutton WC, Damien CJ, Benedict JJ, Baranowski C, Collier S (1997) In vivo evaluation of a resorbable osteoinductive composite as a graft substitute for lumbar spinal fusion. J Spinal Disord 10(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Boden SD, Martin GJ Jr, Morone M, Ugbo JL, Titus L, Hutton WC (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine (Phila Pa 1976) 24(4):320–327

    Article  CAS  Google Scholar 

  • Boerckel JD, Kolambkar YM, Dupont KM, Uhrig BA, Phelps EA, Stevens HY, Garcia AJ, Guldberg RE (2011) Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 32(22):5241–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braye F, Irigaray JL, Jallot E, Oudadesse H, Weber G, Deschamps N, Deschamps C, Frayssinet P, Tourenne P, Tixier H, Terver S, Lefaivre J, Amirabadi A (1996) Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite. Biomaterials 17(13):1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80(7):985–996

    CAS  PubMed  Google Scholar 

  • Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    PubMed  Google Scholar 

  • Burastero G, Scarfi S, Ferraris C, Fresia C, Sessarego N, Fruscione F, Monetti F, Scarfo F, Schupbach P, Podesta M, Grappiolo G, Zocchi E (2010) The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone 47(1):117–126

    Article  CAS  PubMed  Google Scholar 

  • Chatzinikolaidou M, Rekstyte S, Danilevicius P, Pontikoglou C, Papadaki H, Farsari M, Vamvakaki M (2015) Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Mater Sci Eng C Mater Biol Appl 48:301–309

    Article  CAS  PubMed  Google Scholar 

  • Clarke SA, Walsh P, Maggs CA, Buchanan F (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29(6):610–617

    Article  CAS  PubMed  Google Scholar 

  • Cook EA, Cook JJ (2009) Bone graft substitutes and allografts for reconstruction of the foot and ankle. Clin Podiatr Med Surg 26(4):589–605

    Article  PubMed  Google Scholar 

  • Coughlin MJ, Grimes JS, Kennedy MP (2006) Coralline hydroxyapatite bone graft substitute in hindfoot surgery. Foot Ankle Int 27(1):19–22

    PubMed  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Cunin G, Boissonnet H, Petite H, Blanchat C, Guillemin G (2000) Experimental vertebroplasty using osteoconductive granular material. Spine (Phila Pa 1976) 25(9):1070–1076

    Article  CAS  Google Scholar 

  • Damien CJ, Christel PS, Benedict JJ, Patat JL, Guillemin G (1993) A composite of natural coral, collagen, bone protein and basic fibroblast growth factor tested in a rat subcutaneous model. Ann Chir Gynaecol Suppl 207:117–128

    CAS  PubMed  Google Scholar 

  • Damien CJ, Ricci JL, Christel P, Alexander H, Patat JL (1994) Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes. Calcif Tissue Int 55(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • David B, Bonnefont-Rousselot D, Oudina K, Degat MC, Deschepper M, Viateau V, Bensidhoum M, Oddou C, Petite H (2011) A perfusion bioreactor for engineering bone constructs: an in vitro and in vivo study. Tissue Eng Part C Methods 17(5):505–516

    Article  PubMed  Google Scholar 

  • de la Caffiniere JY, Viehweger E, Worcel A (1998) Long-term radiologic evolution of coral implanted in cancellous bone of the lower limb. Madreporic coral versus coral hydroxyapatite. Rev Chir Orthop Reparatrice Appar Mot 84(6):501–507

    PubMed  Google Scholar 

  • De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T (2007) Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 89(3):649–658

    Article  PubMed  Google Scholar 

  • de Peretti F, Trojani C, Cambas PM, Loubiere R, Argenson C (1996) Coral as support of traumatic articular compression. A prospective study of 23 cases involving the lower limb. Rev Chir Orthop Reparatrice Appar Mot 82(3):234–240

    PubMed  Google Scholar 

  • Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002a) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12(1):15–35

    PubMed  Google Scholar 

  • Demers CN, Tabrizian M, Petit A, Hamdy RC, Yahia L (2002b) Effect of experimental parameters on the in vitro release kinetics of transforming growth factor beta1 from coral particles. J Biomed Mater Res 59(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Fricain JC, Roudier M, Rouais F, Basse-Cathalinat B, Dupuy B (1996) Influence of the structure of three corals on their resorption kinetics. J Periodontal Res 31(7):463–469

    Article  CAS  PubMed  Google Scholar 

  • Fricain JC, Bareille R, Rouais F, Basse-Cathalinat B, Dupuy B (1998) “In vitro” dissolution of coral in peritoneal or fibroblast cell cultures. J Dent Res 77(2):406–411

    Article  CAS  PubMed  Google Scholar 

  • Fu K, Xu Q, Czernuszka J, Triffitt JT, Xia Z (2013) Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater 8(6):065007

    Article  PubMed  CAS  Google Scholar 

  • Fuller DA, Stevenson S, Emery SE (1996) The effects of internal fixation on calcium carbonate. Ceramic anterior spinal fusion in dogs. Spine (Phila Pa 1976) 21(18):2131–2136

    Article  CAS  Google Scholar 

  • Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC, Jalovaara P, Urist MR (1997) The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 21(3):194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner A, Weitzel PP (2007) Bone graft substitutes in sports medicine. Sports Med Arthrosc Rev 15(3):158–166

    Article  Google Scholar 

  • Garrido CA, Lobo SE, Turibio FM, Legeros RZ (2011) Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater 2011:129727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gay CV, Mueller WJ (1974) Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science 183(4123):432–434

    Article  CAS  PubMed  Google Scholar 

  • Geiger F, Lorenz H, Xu W, Szalay K, Kasten P, Claes L, Augat P, Richter W (2007) VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 41(4):516–522

    Article  CAS  PubMed  Google Scholar 

  • Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):S20–S27

    Article  PubMed  Google Scholar 

  • Green DW, Padula MP, Santos J, Chou J, Milthorpe B, Ben-Nissan B (2013) A therapeutic potential for marine skeletal proteins in bone regeneration. Mar Drugs 11(4):1203–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21(5):557–567

    Article  CAS  PubMed  Google Scholar 

  • Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L (1989) Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res 23(7):765–779

    Article  CAS  PubMed  Google Scholar 

  • Guillemin G, Hunter SJ, Gay CV (1995) Resorption of natural calcium carbonate by avian osteoclast in vitro. Cells Mater 5(2):157–165

    CAS  Google Scholar 

  • Hemond EM, Kaluziak ST, Vollmer SV (2014) The genetics of colony form and function in Caribbean Acropora corals. BMC Genomics 15:1133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hing KA, Wilson LF, Buckland T (2007) Comparative performance of three ceramic bone graft substitutes. Spine J 7(4):475–490

    Article  PubMed  Google Scholar 

  • Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  CAS  PubMed  Google Scholar 

  • Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T (2007) Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 80(1):85–93

    Article  PubMed  CAS  Google Scholar 

  • Huang RL, Yuan Y, Tu J, Zou GM, Li Q (2014) Exaggerated inflammatory environment decreases BMP-2/ACS-induced ectopic bone mass in a rat model: implications for clinical use of BMP-2. Osteoarthr Cartil/OARS Osteoarthr Res Soc 22(8):1186–1196

    Article  Google Scholar 

  • Irigaray JL, Oudadesse H, Blondiaux G, Collangettes D (1993a) Kinetics of the diffusion of some elements evaluated by neutron activation in a coral implanted in vivo. J Radioanal Nucl Chem 169:339–346

    Article  CAS  Google Scholar 

  • Irigaray JL, Oudadesse H, El Fadl H, Sauvage T, Thomas G, Vernay AM (1993b) Effet de la température sur la structure cristalline d’un biocorail. J Therm Anal 39:3–14

    Article  CAS  Google Scholar 

  • Irigaray JL, Sauvage T, Oudadesse H, El Fadl H, Deschamps C, Lefaivre J, Barlet JP, Terver S, Tixier H (1993c) Study of the mineralization of coral implanted in vivo by radioactive tracers. J Radioanal Nucl Chem 174:93–102

    Article  CAS  Google Scholar 

  • Jammet P, Souyris F, Baldet P, Bonnel F, Huguet M (1994) The effect of different porosities in coral implants: an experimental study. J Craniomaxillofac Surg 22(2):103–108

    Article  CAS  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  PubMed  Google Scholar 

  • Kim RY, Oh JH, Lee BS, Seo YK, Hwang SJ, Kim IS (2014) The effect of dose on rhBMP-2 signaling, delivered via collagen sponge, on osteoclast activation and in vivo bone resorption. Biomaterials 35(6):1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3):328–337

    Article  CAS  PubMed  Google Scholar 

  • Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H (1998) BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 39(2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M (1994) Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand 65(3):246–252

    Article  CAS  PubMed  Google Scholar 

  • Kujala S, Raatikainen T, Ryhanen J, Kaarela O, Jalovaara P (2002) Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions – a preliminary study. Scand J Surg 91(2):186–190

    CAS  PubMed  Google Scholar 

  • Kujala S, Raatikainen T, Ryhanen J, Kaarela O, Jalovaara P (2004) Composite implant of native bovine bone morphogenetic protein (BMP), collagen carrier and biocoral in the treatment of resistant ulnar nonunions: report of five preliminary cases. Arch Orthop Trauma Surg 124(1):26–30

    Article  PubMed  Google Scholar 

  • Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P (2005) Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36(6):1086–1093

    Article  PubMed  CAS  Google Scholar 

  • LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753

    Article  PubMed  CAS  Google Scholar 

  • LeGeros RZ, Orly I, Gregoire M, Kazimiroff J (1991) Comparative properties and in vitro reactions of HA ceramic and coralline HA. Apatite 1:229–233

    Google Scholar 

  • LeGeros RZ, Daculsi G, LeGeros JP (2008) Bioactive bioceramics. In: Pietrzak WS (ed) Muskuloskeletal tissue regenration: biological materials and methods. Humana Press Inc, New Jersey, pp 153–181

    Chapter  Google Scholar 

  • Li S, De Wijn JR, Li J, Layrolle P, De Groot K (2003) Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng 9(3):535–548

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A(6):1032–1044

    PubMed  Google Scholar 

  • Logeart-Avramoglou D, Bourguignon M, Oudina K, Ten Dijke P, Petite H (2006) An assay for the determination of biologically active bone morphogenetic proteins using cells transfected with an inhibitor of differentiation promoter-luciferase construct. Anal Biochem 349(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Loty B, Roux FX, George B, Courpied JP, Postel M (1990) Utilisation du corail en chirurgie osseuse - Résultats après 4 ans d’utilisation. Int Orthop 14:255–259

    CAS  PubMed  Google Scholar 

  • Louisia S, Stromboni M, Meunier A, Sedel L, Petite H (1999) Coral grafting supplemented with bone marrow. J Bone Joint Surg Br 81(4):719–724

    Article  CAS  PubMed  Google Scholar 

  • Lowery GL, Kulkarni S, Pennisi AE (1999) Use of autologous growth factors in lumbar spinal fusion. Bone 25(2 Suppl):47S–50S

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Mao T, Liu B (2000a) The experimental study on the activity of rhBMP-2, coral and collagen composites inducing intramuscle bone. Hua xi kou qiang yi xue za zhi: Huaxi kouqiang yixue zazhi: West China J Stomatology 18(2):94–97

    CAS  Google Scholar 

  • Ma Q, Mao T, Liu B, Zhao J, Chen F, Wang H, Zhao M (2000b) Vascular osteomuscular autograft prefabrication using coral, type I collagen and recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 38(5):561–564

    Article  CAS  PubMed  Google Scholar 

  • Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26(23):4847–4855

    Article  CAS  PubMed  Google Scholar 

  • Mainard D, Gouin F, Chauveaux D, Rosset P, Schwartz C (2011) Les substituts de l’os, du cartilage et du ménisque. Romillat, Paris

    Google Scholar 

  • Manassero M, Viateau V, Retortillo J, Deschepper M, Bensidhoum M, Logeart-Avramoglou D, Petite H (2012) In vivo evaluation of human mesenchymal stem cells survival in a large segmental bone defect in mice. In: Orthopaedic Research Society Meeting, San Francisco, 4–7 February 2012

    Google Scholar 

  • Manassero M, Viateau V, Deschepper M, Oudina K, Logeart-Avramoglou D, Petite H, Bensidhoum M (2013) Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells. Tissue Eng Part A 19(13–14):1554–1563

    Article  CAS  PubMed  Google Scholar 

  • Mangano C, Paino F, D’Aquino R, De Rosa A, Iezzi G, Piattelli A, Laino L, Mitsiadis T, Desiderio V, Mangano F, Papaccio G, Tirino V et al (2011) Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS One 6(4):e18721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcacci M, Kon E, Zaffagnini S, Giardino R, Rocca M, Corsi A, Benvenuti A, Bianco P, Quarto R, Martin I, Muraglia A, Cancedda R (1999) Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int 64(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Marchac D, Sandor G (1994) Use of coral granules in the craniofacial skeleton. J Craniofac Surg 5(4):213–217

    Article  CAS  PubMed  Google Scholar 

  • Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46(3):571–576

    Article  CAS  PubMed  Google Scholar 

  • Molly L, Vandromme H, Quirynen M, Schepers E, Adams JL, van Steenberghe D (2008) Bone formation following implantation of bone biomaterials into extraction sites. J Periodontol 79(6):1108–1115

    Article  PubMed  Google Scholar 

  • Murugan R, Ramakrishna S (2004) Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomaterials 25(15):3073–3080

    Article  CAS  PubMed  Google Scholar 

  • Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bunger C (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28(6):1036–1047

    Article  CAS  PubMed  Google Scholar 

  • Nandi SK, Kundu B, Mukherjee J, Mahato A, Datta S, Balla VK (2015) Converted marine coral hydroxyapatite implants with growth factors: in vivo bone regeneration. Mater Sci Eng C Mater Biol Appl 49:816–823

    Article  CAS  PubMed  Google Scholar 

  • Papa F, Cortese A, Sagliocco R, Farella M, Banzi C, Maltarello MC, Pellegrini C, D’Agostino E, Aimola P, Claudio PP (2009) Outcome of 47 consecutive sinus lift operations using aragonitic calcium carbonate associated with autologous platelet-rich plasma: clinical, histologic, and histomorphometrical evaluations. J Craniofac Surg 20(6):2067–2074

    Article  PubMed  Google Scholar 

  • Papacharalambous SK, Anastasoff KI (1993) Natural coral skeleton used as onlay graft for contour augmentation of the face. A preliminary report. Int J Oral Maxillofac Surg 22(5):260–264

    Article  CAS  PubMed  Google Scholar 

  • Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS (2012) Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med 23(2):473–483

    Article  CAS  PubMed  Google Scholar 

  • Patat JL, Pouliquen JC, Guillemin G (1992) Natural coral used as a substitute for bone graft. Its role in the economics of blood in spinal surgery. Acta Orthop Belg 58(Suppl 1):115–121

    PubMed  Google Scholar 

  • Patel A, Honnart F, Guillemin G, Patat JL (1980) Use of madreporaria coral skeletal fragments in orthopedic and reconstructive surgery: experimental studies and human clinical application (author’s transl). Chirurgie 106(3):199–205

    CAS  PubMed  Google Scholar 

  • Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86

    Article  PubMed  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat JL (1989) Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 75(6):360–369

    CAS  PubMed  Google Scholar 

  • Preaemer A, Furnes S, Rice D (1992) Musculoskeletal conditions in the United States. American Academy of Orthopedic Surgeons, Rosemont

    Google Scholar 

  • Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T (2013) A comparative study on morphochemical properties and osteogenic cell differentiation within bone graft and coral graft culture systems. Int J Med Sci 10(12):1608–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos-Silva P, Kaandorp J, Herbst F, Plasseraud L, Alcaraz G, Stern C, Corneillat M, Guichard N, Durlet C, Luquet G, Marin F (2014) The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization. PLoS One 9(6):e97454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramzi N, Ribeiro-Vaz G, Fomekong E, Lecouvet FE, Raftopoulos C (2008) Long term outcome of anterior cervical discectomy and fusion using coral grafts. Acta Neurochir 150(12):1249–1256; discussion 1256

    Article  PubMed  Google Scholar 

  • Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20(6):1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard M, Aguado E, Cottrel M, Daculsi G (1998) Ultrastructural and electron diffraction of the bone-ceramic interfacial zone in coral and biphasic CaP implants. Calcif Tissue Int 62(5):437–442

    Article  CAS  PubMed  Google Scholar 

  • Roudier M, Bouchon C, Rouvillain JL, Amedee J, Bareille R, Rouais F, Fricain JC, Dupuy B, Kien P, Jeandot R et al (1995) The resorption of bone-implanted corals varies with porosity but also with the host reaction. J Biomed Mater Res 29(8):909–915

    Article  CAS  PubMed  Google Scholar 

  • Roux FX, Brasnu D, Loty B, George B, Guillemin G (1988a) Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 69(4):510–513

    Article  CAS  PubMed  Google Scholar 

  • Roux FX, Loty B, Brasnu D, Guillemin G (1988b) Reconstruction of the anterior face of the base of the skull using coral grafts. Neurochirurgie 34(2):110–112

    CAS  PubMed  Google Scholar 

  • Roux FX, Brasnu D, Menard M, Devaux B, Nohra G, Loty B (1995) Madreporic coral for cranial base reconstruction. 8 years experience. Acta Neurochir 133(3–4):201–205

    Article  CAS  PubMed  Google Scholar 

  • Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247(5438):220–222

    Article  CAS  PubMed  Google Scholar 

  • Schliephake H, Kage T (2001) Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. J Biomed Mater Res 56(1):128–136

    Article  CAS  PubMed  Google Scholar 

  • Sciadini MF, Johnson KD (2000) Evaluation of recombinant human bone morphogenetic protein-2 as a bone-graft substitute in a canine segmental defect model. J Orthop Res 18(2):289–302

    Article  CAS  PubMed  Google Scholar 

  • Sciadini MF, Dawson JM, Johnson KD (1997a) Bovine-derived bone protein as a bone graft substitute in a canine segmental defect model. J Orthop Trauma 11(7):496–508

    Article  CAS  PubMed  Google Scholar 

  • Sciadini MF, Dawson JM, Johnson KD (1997b) Evaluation of bovine-derived bone protein with a natural coral carrier as a bone-graft substitute in a canine segmental defect model. J Orthop Res 15(6):844–857

    Article  CAS  PubMed  Google Scholar 

  • Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38(Suppl 1):S75–S80

    Article  PubMed  Google Scholar 

  • Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A (2012) The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg 10(2):96–101

    Article  PubMed  Google Scholar 

  • Shahgaldi BF (1998) Coral graft restoration of osteochondral defects. Biomaterials 19(1–3):205–213

    Article  CAS  PubMed  Google Scholar 

  • Shor L, Guceri S, Wen X, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297

    Article  CAS  PubMed  Google Scholar 

  • Shors EC (1999) Coralline bone graft substitutes. Orthop Clin North Am 30(4):599–613

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar M, Kumar TS, Shantha KL, Rao KP (1996) Development of hydroxyapatite derived from Indian coral. Biomaterials 17(17):1709–1714

    Article  CAS  PubMed  Google Scholar 

  • Soffer E, Ouhayoun JP, Meunier A, Anagnostou F (2006) Effects of autologous platelet lysates on ceramic particle resorption and new bone formation in critical size defects: the role of anatomical sites. J Biomed Mater Res B Appl Biomater 79(1):86–94

    Article  CAS  PubMed  Google Scholar 

  • Soost F, Reisshauer B, Herrmann A, Neumann HJ (1998) Natural coral calcium carbonate as alternative substitute in bone defects of the skull. Mund-, Kiefer– und Gesichtschirurgie: MKG 2(2):96–100

    Article  CAS  PubMed  Google Scholar 

  • Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z (2001) Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J 1(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Tho KS, Krishnamoorthy S (1996) Use of coral grafts in anterior interbody fusion of the rabbit spine. Ann Acad Med Singapore 25(6):824–827

    CAS  PubMed  Google Scholar 

  • Toombs JP, Wallace LJ, Bjorling DE, Rowland GN (1985) Evaluation of Key’s hypothesis in the feline tibia: an experimental model for augmented bone healing studies. Am J Vet Res 46(2):513–518

    CAS  PubMed  Google Scholar 

  • Tran CT, Gargiulo C, Thao HD, Tuan HM, Filgueira L, Michael Strong D (2011) Culture and differentiation of osteoblasts on coral scaffold from human bone marrow mesenchymal stem cells. Cell Tissue Bank 12(4):247–261

    Article  CAS  PubMed  Google Scholar 

  • Tuominen T, Jamsa T, Tuukkanen J, Nieminen P, Lindholm TC, Lindholm TS, Jalovaara P (2000) Native bovine bone morphogenetic protein improves the potential of biocoral to heal segmental canine ulnar defects. Int Orthop 24(5):289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerio P, Pereira MM, Goes AM, Leite MF (2009) Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 4(4):045011

    Article  CAS  PubMed  Google Scholar 

  • Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW (2007) Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomater 3(5):785–793

    Article  CAS  PubMed  Google Scholar 

  • Velich N, Nemeth Z, Toth C, Szabo G (2004) Long-term results with different bone substitutes used for sinus floor elevation. J Craniofac Surg 15(1):38–41

    Article  PubMed  Google Scholar 

  • Viateau V, Guillemin G, Yang YC, Bensaid W, Reviron T, Oudina K, Meunier A, Sedel L, Petite H (2004) A technique for creating critical-size defects in the metatarsus of sheep for use in investigation of healing of long-bone defects. Am J Vet Res 65(12):1653–1657

    Article  PubMed  Google Scholar 

  • Viateau V, Guillemin G, Calando Y, Logeart D, Oudina K, Sedel L, Hannouche D, Bousson V, Petite H (2006) Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 35(5):445–452

    Article  PubMed  Google Scholar 

  • Viateau V, Guillemin G, Bousson V, Oudina K, Hannouche D, Sedel L, Logeart-Avramoglou D, Petite H (2007) Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res 25(6):741–749

    Article  PubMed  Google Scholar 

  • Viateau V, Bensidhoum M, Guillemin G, Petite H, Hannouche D, Anagnostou F, Pelissier P (2010) Use of the induced membrane technique for bone tissue engineering purposes: animal studies. Orthop Clin North Am 41(1):49–56

    Article  PubMed  Google Scholar 

  • Viateau V, Manassero M, Sensebe L, Langonne A, Marchat D, Logeart-Avramoglou D, Petite H, Bensidhoum M (2016) Comparative study of the osteogenic ability of four different ceramic constructs in an ectopic large animal model. J Tissue Eng Regen Med 10(3):E177–187

    Google Scholar 

  • Volpi N (1999) Adsorption of glycosaminoglycans onto coral – a new possible implant biomaterials for regeneration therapy. Biomaterials 20(15):1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Volpi N (2002) Influence of charge density, sulfate group position and molecular mass on adsorption of chondroitin sulfate onto coral. Biomaterials 23(14):3015–3022

    Article  CAS  PubMed  Google Scholar 

  • von Doernberg MC, von Rechenberg B, Bohner M, Grunenfelder S, van Lenthe GH, Muller R, Gasser B, Mathys R, Baroud G, Auer J (2006) In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 27(30):5186–5198

    Article  CAS  Google Scholar 

  • Vuola J, Taurio R, Goransson H, Asko-Seljavaara S (1998) Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis. Biomaterials 19(1–3):223–227

    Article  CAS  PubMed  Google Scholar 

  • Vuola J, Bohling T, Kinnunen J, Hirvensalo E, Asko-Seljavaara S (2000) Natural coral as bone-defect-filling material. J Biomed Mater Res 51(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • Ward WG, Goldner RD, Nunley JA (1990) Reconstruction of tibial bone defects in tibial nonunion. Microsurgery 11(1):63–73

    Article  CAS  PubMed  Google Scholar 

  • White E, Shors EC (1986) Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin N Am 30(1):49–67

    CAS  PubMed  Google Scholar 

  • White RA, Weber JN, White EW (1972) Replamineform: a new process for preparing porous ceramic, metal, and polymer prosthetic materials. Science 176(4037):922–924

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY (2009) A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med 20(6):1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Suarez-Gonzalez D, Khalil AS, Murphy WL (2015) How does the pathophysiological context influence delivery of bone growth factors? Adv Drug Del Rev 84:68–84

    Google Scholar 

  • Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A 107(31):13614–13619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi M, Moonga BS, Huang CL (2004) Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biol Rev Camb Philos Soc 79(1):79–100

    Article  PubMed  Google Scholar 

  • Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A 17(9–10):1389–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng R, Ren C, Li C (1997) Experimental study on bone formation in a denser coral used for repairing cortical defects in dogs. Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese J Stomatology 32(1):16–18

    CAS  Google Scholar 

  • Zhang S, Mao T, Wang H (1998) An experimental study on the bone repairing ability of recombinant human bone morphogenetic protein-2-coral composited artificial bone. Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese J Stomatology 33(1):13–14

    CAS  Google Scholar 

  • Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28(8):1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Mao T, Chen F (2011) Influence of platelet-rich plasma on ectopic bone formation of bone marrow stromal cells in porous coral. Int J Oral Maxillofac Surg 40(9):961–965

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhang Y, Chen W, Zhang B, Wang S (2013) Long-term controlled release of I-tagged BMP-2 by mesoporous bioactive glass with ordered nanopores. Exp Ther Med 6(6):1443–1448

    PubMed  PubMed Central  Google Scholar 

  • Zhu H, Schulz J, Schliephake H (2010a) Human bone marrow stroma stem cell distribution in calcium carbonate scaffolds using two different seeding methods. Clin Oral Implants Res 21(2):182–188

    Article  PubMed  Google Scholar 

  • Zhu L, Chuanchang D, Wei L, Yilin C, Jiasheng D (2010b) Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res 28(3):412–418

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Manassero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manassero, M., Decambron, A., Guillemin, N., Petite, H., Bizios, R., Viateau, V. (2016). Coral Scaffolds in Bone Tissue Engineering and Bone Regeneration. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_43

Download citation

Publish with us

Policies and ethics