Skip to main content

Targeting Tumor Angiogenesis for Cancer Prevention

  • Chapter
  • First Online:
Book cover Molecular Targets and Strategies in Cancer Prevention

Abstract

Advances in the knowledge of the main hallmarks of cancer will provide the basis for the identification and development of therapeutic strategies to either prevent the occurrence of precancerous lesions or to delay their progression to invasive disease. A deregulated and persistently activated angiogenesis is essential for tumor growth and metastasis, facilitating their sustenance through the availability of nutrients and oxygen, as well as the removal of metabolic wastes and carbon dioxide. Although specialized diets are not the only way to decrease the chances to develop cancer, those that are enriched in antiangiogenic molecules could be used to prevent the activation of the angiogenic switch in the early steps of tumor progression as well as in the micrometastasis awakening from their dormant state. The molecular mechanisms controlling tumor angiogenesis and the potential of the use of dietary derived inhibitors of angiogenesis as chemopreventive agents will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Dollé L, Depypere HT, Bracke ME. Anti-invasive/anti-metastasis strategies: new roads, new tools and new hopes. Curr Cancer Drug Targets. 2006;6:729–51.

    Article  PubMed  Google Scholar 

  3. Sporn MB. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976;36:2699–702.

    CAS  PubMed  Google Scholar 

  4. Blackburn EH. Highlighting the science of cancer prevention. Cancer Prev Res (Phila). 2010;3(4):393.

    Article  Google Scholar 

  5. DeWeerdt S. Food: the omnivore’s labyrinth. Nature. 2011;471(7339):S22–4.

    Article  CAS  PubMed  Google Scholar 

  6. Serrano D, Lazzeroni M, Bonanni B. Cancer chemoprevention: much has been done, but there is still much to do. State of the art and possible new approaches. Mol Oncol. 2015;9(5):1008–71.

    Google Scholar 

  7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  9. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.

    Article  CAS  PubMed  Google Scholar 

  10. Witsch E, Sela M, Yarden Y. Roles for growth factors in cancer progression. Physiology (Bethesda). 2010;25:85–101.

    Article  CAS  Google Scholar 

  11. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29(3):405–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2:103–12.

    Article  CAS  PubMed  Google Scholar 

  13. Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer: a perspective. Oncogene. 2005;24:2909–15.

    Article  CAS  PubMed  Google Scholar 

  14. Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8:671–82.

    Article  CAS  PubMed  Google Scholar 

  15. Amin AR, Karpowicz PA, Carey TE, et al. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol. 2015;35:S55.

    Google Scholar 

  16. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432:307–15.

    Article  CAS  PubMed  Google Scholar 

  18. Fiandalo MV, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012;34:165–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–98.

    Article  CAS  PubMed  Google Scholar 

  20. Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci. 2014;35(10):520–36.

    Article  CAS  PubMed  Google Scholar 

  21. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.

    Article  CAS  PubMed  Google Scholar 

  22. Heaphy CM, Meeker AK. The potential utility of telomere-related markers for cancer diagnosis. J Cell Mol Med. 2011;15:1227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raynaud CM, Hernandez J, Llorca FP, et al. DNA damage repair and telomere length in normal breast, preneoplastic lesions, and invasive cancer. Am J Clin Oncol. 2010;33:341–5.

    Article  CAS  PubMed  Google Scholar 

  24. Fuggetta MP, Lanzilli G, Tricarico M, et al. Effect of resveratrol on proliferation and telomerase activity of human colon cancer cells in vitro. J Exp Clin Cancer Res. 2006;25(2):189–93.

    CAS  PubMed  Google Scholar 

  25. Yuen JW, Gohel MD, Au DW. Telomerase-associated apoptotic events by mushroom ganoderma lucidum on premalignant human urothelial cells. Nutr Cancer. 2008;60(1):109–19.

    Article  PubMed  Google Scholar 

  26. Heinke J, Patterson C, Moser M. Life is a pattern: vascular assembly within the embryo. Front Biosci (Elite Ed). 2012;4:2269–88.

    Article  Google Scholar 

  27. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  CAS  PubMed  Google Scholar 

  28. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  PubMed  Google Scholar 

  30. Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–76.

    Article  CAS  PubMed  Google Scholar 

  31. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013;33 Suppl 1:S79–84.

    Article  PubMed  CAS  Google Scholar 

  35. Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339(6117):286–91.

    Google Scholar 

  36. Zhang QW, Liu L, Gong CY, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7:e50946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumor angiogenesis: subversion of immune responses to promote tumor growth. Semin Cancer Biol. 2013;23:149–58.

    Article  CAS  PubMed  Google Scholar 

  38. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol. 2010;176:1564–76.

    Article  PubMed  PubMed Central  Google Scholar 

  39. DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 2010;29:309–16.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  Google Scholar 

  41. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706.

    Article  CAS  PubMed  Google Scholar 

  42. Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond). 2014;11:23.

    Article  CAS  Google Scholar 

  43. Bindea G, Mlecnik B, Fridman WH, Pagès F, Galon J. Natural immunity to cancer in humans. Curr Opin Immunol. 2010;22:215–22.

    Article  CAS  PubMed  Google Scholar 

  44. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol. 2008;84:988–93.

    Article  CAS  PubMed  Google Scholar 

  45. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.

    Article  CAS  PubMed  Google Scholar 

  46. Marzbani E, Inatsuka C, Lu H, Disis ML. The invisible arm of immunity in common cancer chemoprevention agents. Cancer Prev Res (Phila). 2013;6(8):764–73.

    Article  CAS  Google Scholar 

  47. Warburg O. On the origin of cancer cells. Biochem Z. 1956;123:309–14.

    CAS  Google Scholar 

  48. Medina MA. Targeting the metabolism of cancer cells. A foreword. Curr Pharm Design. 2014;20(15):2555–6.

    Article  CAS  Google Scholar 

  49. Ruiz-Pérez MV, Sánchez-Jiménez F, Alonso FJ, Segura JA, Márquez J, Medina MA. Glutamine, glucose and other fuels for cancer. Curr Pharm Des. 2014;20(15):2557–79.

    Article  PubMed  CAS  Google Scholar 

  50. Pulito C, Donzelli S, Muti P, Puzzo L, Strano S, Blandino G. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. Ann Transl Med. 2014;2(6):58.

    PubMed  PubMed Central  Google Scholar 

  51. Steward WP, Brown K. Cancer chemoprevention: a rapidly evolving field. Br J Cancer. 2013;109(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinicrope FA. Targeting cyclooxygenase-2 for prevention and therapy of colorectal cancer. Mol Carcinog. 2006;45(6):447–54.

    Article  CAS  PubMed  Google Scholar 

  53. Monnier Y, Zaric J, Rüegg C. Inhibition of angiogenesis by non-steroidal anti-inflammatory drugs: from the bench to the bedside and back. Curr Drug Targets Inflamm Allergy. 2005;4(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  54. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.

    Article  CAS  PubMed  Google Scholar 

  55. Montuori N, Ragno P. Role of uPA/uPAR in the modulation of angiogenesis. Chem Immunol Allergy. 2014;99:105–22.

    Article  CAS  PubMed  Google Scholar 

  56. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol. 2006;26(4):716–28.

    Article  PubMed  CAS  Google Scholar 

  58. van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78(2):203–12.

    Article  PubMed  CAS  Google Scholar 

  59. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  60. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–86.

    Article  CAS  PubMed  Google Scholar 

  61. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  62. Folkman J, Hahnfeldt P, Hlatky L. Cancer: looking outside the genome. Nat Rev Mol Cell Biol. 2000;1:76–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays. 1991;13(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  64. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000;6(4):389–95.

    Article  CAS  PubMed  Google Scholar 

  65. Mizukami Y, Sasajima J, Ashida T, Kohgo Y. Abnormal tumor vasculatures and bone marrow-derived pro-angiogenic cells in cancer. Int J Hematol. 2012;95(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  66. Quesada AR, Muñoz-Chápuli R, Medina MA. Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev. 2006;26(4):483–530.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou J, Schmid T, Schnitzer S, Brune B. Tumor hypoxia and cancer progression. Cancer Lett. 2006;237:10–21.

    Article  CAS  PubMed  Google Scholar 

  68. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129(3):465–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37(9):364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu Y, Liu J, Huang H. Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem. 2013;114(3):498–509.

    Article  CAS  PubMed  Google Scholar 

  72. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11(6):393–410.

    Article  CAS  PubMed  Google Scholar 

  73. Xia Y, Choi HK, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 2012;49:24–40.

    Article  CAS  PubMed  Google Scholar 

  74. Muñoz-Chápuli R, Quesada AR, Angel Medina M. Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci. 2004;61(17):2224–43.

    Article  PubMed  CAS  Google Scholar 

  75. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  CAS  PubMed  Google Scholar 

  76. Ferrara N. VEGF as a therapeutic target in cancer. Oncology. 2005;69 Suppl 3:11–6.

    Article  CAS  PubMed  Google Scholar 

  77. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  78. Qi JH, Claesson-Welsh L. VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res. 2001;263:173–82.

    Article  CAS  PubMed  Google Scholar 

  79. Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol. 2001;2(4):257–67.

    Article  CAS  PubMed  Google Scholar 

  80. Plank MJ, Sleeman BD, Jones PF. The role of the angiopoietins in tumour angiogenesis growth factors. Growth Factors. 2004;22(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  81. Shim WS, Ho IA, Wong PE. Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res. 2007;5(7):655–65.

    Article  CAS  PubMed  Google Scholar 

  82. Murakami M, Elfenbein A, Simons M. Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res. 2008;78(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  83. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  84. Grant DS, Kleinman HK, Goldberg ID, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A. 1993;90(5):1937–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Uruno A, Sugawara A, Kanatsuka H, et al. Hepatocyte growth factor stimulates nitric oxide production through endothelial nitric oxide synthase activation by the phosphoinositide 3-kinase/Akt pathway and possibly by mitogen-activated protein kinase in vascular endothelial cells. Hypertens Res. 2004;27(11):887–95.

    Article  CAS  PubMed  Google Scholar 

  86. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.

    Article  CAS  PubMed  Google Scholar 

  87. Siekmann AF, Affolter M, Belting HG. The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res. 2013;319(9):1255–63.

    Article  CAS  PubMed  Google Scholar 

  88. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  89. Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444(7122):1083–7.

    Article  CAS  PubMed  Google Scholar 

  90. Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444(7122):1032–7.

    Article  CAS  PubMed  Google Scholar 

  91. Thurston G, Kitajewski J. VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer. 2008;99(8):1204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  95. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005;7(4):452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol. 2006;3(1):24–40.

    Article  CAS  PubMed  Google Scholar 

  97. Quesada AR, Medina MÁ, Muñoz-Chápuli R, Ponce ÁL. Do not say ever never more: the ins and outs of antiangiogenic therapies. Curr Pharm Des. 2010;16(35):3932–57.

    Article  CAS  PubMed  Google Scholar 

  98. Quesada AR, Medina MA, Alba E. Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays. 2007;29(11):1159–68.

    Article  CAS  PubMed  Google Scholar 

  99. Medina MA, Muñoz-Chápuli R, Quesada AR. Challenges of antiangiogenic cancer therapy: trials and errors, and renewed hope. J Cell Mol Med. 2007;11(3):374–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sweeney CJ, Miller KD, Sledge Jr GW. Resistance in the anti-angiogenic era: nay-saying or a word of caution? Trends Mol Med. 2003;9(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  102. Tosetti F, Ferrari N, De Flora S, Albini A. ‘Angioprevention’: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16:2–14.

    Article  CAS  PubMed  Google Scholar 

  103. Shankar S, Ganapathy S, Srivastava RK. Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci. 2007;12:4881–99.

    Article  CAS  PubMed  Google Scholar 

  104. Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J Physiol Biochem. 2010;66(3):265–70.

    Article  CAS  PubMed  Google Scholar 

  105. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Saito Y, Hasebe-Takenaka Y, Ueda T, et al. Effects of green tea fractions on oxygen-induced retinal neovascularization in the neonatal rat. J Clin Biochem Nutr. 2007;41:43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cao Y, Cao R. Angiogenesis inhibited by drinking tea. Nature. 1999;398:381.

    Article  CAS  PubMed  Google Scholar 

  108. Neuhaus T, Pabst S, Stier S, et al. Inhibition of the vascular-endothelial growth factor-induced intracellular signaling and mitogenesis of human endothelial cells by epigallocatechin-3 gallate. Eur J Pharmacol. 2004;483:223–7.

    Article  CAS  PubMed  Google Scholar 

  109. Fassina G, Vene R, Morini M, et al. Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res. 2004;10:4865–73.

    Article  CAS  PubMed  Google Scholar 

  110. Moyle CW, Cerezo AB, Winterbone MS, et al. Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: relevance to angiogenesis. Mol Nutr Food Res. 2015;59(3):401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li X, Feng Y, Liu J, Feng X, Zhou K, Tang X. Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1α and VEGF expression. J Nutrigenet Nutrigenomics. 2013;6(3):169–78.

    Article  PubMed  CAS  Google Scholar 

  112. Gu JW, Makey KL, Tucker KB, et al. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell. 2013;5(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ohga N, Hida K, Hida Y, et al. Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green tea, on tumor-associated endothelial cells and endothelial progenitor cells. Cancer Sci. 2009;100(10):1963–70.

    Article  CAS  PubMed  Google Scholar 

  114. Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci. 2011;12:5592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer. 2010;17:R39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Iriti M, Varoni EM. Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutrients. 2013;5(7):2564–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Russo GL, Russo M, Spagnuolo C, et al. Quercetin: a pleiotropic kinase inhibitor against cancer. Cancer Treat Res. 2014;159:185–205.

    Article  CAS  PubMed  Google Scholar 

  118. Mouria M, Gukovskaya AS, Jung Y, et al. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer. 2002;98(5):761–9.

    Article  CAS  PubMed  Google Scholar 

  119. Tan WF, Lin LP, Li MH, et al. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol. 2003;459(2-3):255–62.

    Article  CAS  PubMed  Google Scholar 

  120. Ansó E, Zuazo A, Irigoyen M, Urdaci MC, Rouzaut A, Martínez-Irujo JJ. Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochem Pharmacol. 2010;79(11):1600–9.

    Article  PubMed  CAS  Google Scholar 

  121. Jackson SJ, Venema RC. Quercetin inhibits eNOS, microtubule polymerization, and mitotic progression in bovine aortic endothelial cells. J Nutr. 2006;136(5):1178–84.

    CAS  PubMed  Google Scholar 

  122. Pratheeshkumar P, Budhraja A, Son YO, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One. 2012;7(10):e47516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Xiao X, Shi D, Liu L, et al. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One. 2011;6(8):e22934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ribeiro de Lima MT, Waffo-Téguo P, Teissedre PL, et al. Determination of stilbenes (trans-astringin, cis- and trans-piceid, and cis- and trans-resveratrol) in Portuguese wines. J Agric Food Chem. 1999;47:2666–70.

    Article  CAS  PubMed  Google Scholar 

  125. Sellappan S, Akoh CC. Flavonoids and antioxidant capacity of Georgia-grown Vidalia onions. J Agric Food Chem. 2002;50:5338–42.

    Article  CAS  PubMed  Google Scholar 

  126. Lee KW, Kang NJ, Rogozin EA, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis. 2007;28:1918–27.

    Article  CAS  PubMed  Google Scholar 

  127. Jung SK, Lee KW, Byun S, et al. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis. 2010;31(5):911–7.

    Article  CAS  PubMed  Google Scholar 

  128. Kang NJ, Jung SK, Lee KW, Lee HJ. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci. 2011;1229:124–32.

    Article  CAS  PubMed  Google Scholar 

  129. Ahn MR, Kunimasa K, Kumazawa S, et al. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol Nutr Food Res. 2009;53(5):643–51.

    Article  CAS  PubMed  Google Scholar 

  130. Luo H, Rankin GO, Liu L, Daddysman MK, Jiang BH, Chen YC. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr Cancer. 2009;61(4):554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee KM, Lee KW, Jung SK, et al. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem Pharmacol. 2010;80:2042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Garcia-Mediavilla V, Crespo I, Collado PS, et al. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol. 2007;557:221–9.

    Article  CAS  PubMed  Google Scholar 

  133. Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem. 2014;86:103–12.

    Article  CAS  PubMed  Google Scholar 

  134. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19(2):151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Park JH, Jang YJ, Choi YJ, et al. Fisetin inhibits matrix metalloproteinases and reduces tumor cell invasiveness and endothelial cell tube formation. Nutr Cancer. 2013;65(8):1192–9.

    Article  CAS  PubMed  Google Scholar 

  136. Bhat TA, Nambiar D, Pal A, Agarwal R, Singh RP. Fisetin inhibits various attributes of angiogenesis in vitro and in vivo--implications for angioprevention. Carcinogenesis. 2012;33(2):385–93.

    Article  CAS  PubMed  Google Scholar 

  137. Touil YS, Auzeil N, Boulinguez F, et al. Fisetin disposition and metabolism in mice: identification of geraldol as an active metabolite. Biochem Pharmacol. 2011;82(11):1731–9.

    Article  CAS  PubMed  Google Scholar 

  138. Mahmoud AM, Yang W, Bosland MC. Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol. 2014;140:116–32.

    Article  CAS  PubMed  Google Scholar 

  139. Douglas CC, Johnson SA, Arjmandi BH. Soy and its isoflavones: the truth behind the science in breast cancer. Anticancer Agents Med Chem. 2013;13(8):1178–87.

    Article  CAS  PubMed  Google Scholar 

  140. Fajardo I, Quesada AR, Núñez de Castro I, Sánchez-Jiménez F, Medina MA. A comparative study of the effects of genistein and 2-methoxyestradiol on the proteolytic balance and tumour cell proliferation. Br J Cancer. 1999;80(1-2):17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008;269(2):226–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Si H, Liu D. Phytochemical genistein in the regulation of vascular function: new insights. Curr Med Chem. 2007;14(24):2581–9.

    Article  CAS  PubMed  Google Scholar 

  143. Marini H, Minutoli L, Polito F, et al. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med. 2007;146(12):839–47.

    Article  PubMed  Google Scholar 

  144. Fotsis T, Pepper M, Adlercreutz H, et al. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci U S A. 1993;90(7):2690–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest. 2003;21(5):744–57.

    Article  CAS  PubMed  Google Scholar 

  146. Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003;89(3):529–38.

    Article  CAS  PubMed  Google Scholar 

  147. Su SJ, Yeh TM, Chuang WJ, et al. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol. 2005;69(2):307–18.

    Article  CAS  PubMed  Google Scholar 

  148. Büchler P, Reber HA, Büchler MW, Friess H, Lavey RS, Hines OJ. Antiangiogenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer. 2004;100(1):201–10.

    Article  PubMed  CAS  Google Scholar 

  149. Yu X, Zhu J, Mi M, Chen W, Pan Q, Wei M. Anti-angiogenic genistein inhibits VEGF-induced endothelial cell activation by decreasing PTK activity and MAPK activation. Med Oncol. 2012;29(1):349–57.

    Article  CAS  PubMed  Google Scholar 

  150. Lazarevic B, Boezelijn G, Diep LM, et al. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr Cancer. 2011;63(6):889–98.

    Article  CAS  PubMed  Google Scholar 

  151. Khan SA, Chatterton RT, Michel N, et al. Soy isoflavone supplementation for breast cancer risk reduction: a randomized phase II trial. Cancer Prev Res (Phila). 2012;5(2):309–19.

    Article  CAS  Google Scholar 

  152. Messing E, Gee JR, Saltzstein DR, et al. A phase 2 cancer chemoprevention biomarker trial of isoflavone G-2535 (genistein) in presurgical bladder cancer patients. Cancer Prev Res (Phila). 2012;5:621–30.

    Article  CAS  PubMed Central  Google Scholar 

  153. El-Rayes BF, Philip PA, Sarkar FH, et al. A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Invest New Drugs. 2011;29:694–9.

    Article  CAS  PubMed  Google Scholar 

  154. Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003;63(15):4375–83.

    CAS  PubMed  Google Scholar 

  155. Ovesná Z, Vachálková A, Horváthová K, Tóthová D. Pentacyclic triterpenoic acids: new chemoprotective compounds. Minireview. Neoplasma. 2004;51(5):327–33.

    PubMed  Google Scholar 

  156. Cárdenas C, Quesada AR, Medina MA. Effects of ursolic acid on different steps of the angiogenic process. Biochem Biophys Res Commun. 2004;320(2):402–8.

    Article  PubMed  CAS  Google Scholar 

  157. Kiran MS, Viji RI, Sameer Kumar VB, Sudhakaran PR. Modulation of angiogenic factors by ursolic acid. Biochem Biophys Res Commun. 2008;371(3):556–60.

    Article  CAS  PubMed  Google Scholar 

  158. Lin J, Chen Y, Wei L, Hong Z, Sferra TJ, Peng J. Ursolic acid inhibits colorectal cancer angiogenesis through suppression of multiple signaling pathways. Int J Oncol. 2013;43(5):1666–74.

    CAS  PubMed  Google Scholar 

  159. Saraswati S, Agrawal SS, Alhaider AA. Ursolic acid inhibits tumor angiogenesis and induces apoptosis through mitochondrial-dependent pathway in Ehrlich ascites carcinoma tumor. Chem Biol Interact. 2013;206(2):153–65.

    Article  CAS  PubMed  Google Scholar 

  160. Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A. Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies. Biochem Pharmacol. 2013;85:1579–87.

    Article  CAS  PubMed  Google Scholar 

  161. Salminen A, Lehtonen M, Paimela T, Kaarniranta K. Celastrol: molecular targets of thunder god vine. Biochem Biophys Res Commun. 2010;394(3):439–42.

    Article  CAS  PubMed  Google Scholar 

  162. Kannaiyan R, Shanmugam MK, Sethi G. Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer Lett. 2011;303(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  163. Huang Y, Zhou Y, Fan Y, Zhou D. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett. 2008;264(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  164. Pang X, Yi Z, Zhang J, Lu B, et al. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res. 2010;70(5):1951–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Huang L, Zhang Z, Zhang S, et al. Inhibitory action of Celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway. Int J Mol Med. 2011;27(3):407–15.

    CAS  PubMed  Google Scholar 

  166. Ni H, Zhao W, Kong X, Li H, Ouyang J. Celastrol inhibits lipopolysaccharide-induced angiogenesis by suppressing TLR4-triggered nuclear factor-kappa B activation. Acta Haematol. 2014;131(2):102–11.

    Article  CAS  PubMed  Google Scholar 

  167. López-Jiménez A, García-Caballero M, Medina MÁ, Quesada AR. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur J Nutr. 2013;52(1):85–95.

    Article  PubMed  CAS  Google Scholar 

  168. Cárdenas C, Quesada AR, Medina MÁ. Insights on the antitumor effects of kahweol on human breast cancer: decreased survival and increased production of reactive oxygen species and cytotoxicity. Biochem Biophys Res Commun. 2014;447(3):452–8.

    Article  PubMed  CAS  Google Scholar 

  169. Cárdenas C, Quesada AR, Medina MA. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS One. 2011;6(8):e23407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Srinivas G, Babykutty S, Sathiadevan PP, Srinivas P. Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev. 2007;27(5):591–608.

    Article  CAS  PubMed  Google Scholar 

  171. Wang XH, Wu SY, Zhen YS. Inhibitory effects of emodin on angiogenesis. Yao Xue Xue Bao. 2004;39(4):254–8.

    CAS  PubMed  Google Scholar 

  172. Kwak HJ, Park MJ, Park CM, et al. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int J Cancer. 2006;118(11):2711–20.

    Article  CAS  PubMed  Google Scholar 

  173. Kaneshiro T, Morioka T, Inamine M, et al. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur J Pharmacol. 2006;553(1-3):46–53.

    Article  CAS  PubMed  Google Scholar 

  174. Lin SZ, Wei WT, Chen H, et al. Antitumor activity of emodin against pancreatic cancer depends on its dual role: promotion of apoptosis and suppression of angiogenesis. PLoS One. 2012;7(8):e42146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ma J, Lu H, Wang S, et al. The anthraquinone derivative Emodin inhibits angiogenesis and metastasis through downregulating Runx2 activity in breast cancer. Int J Oncol. 2015;46(4):1619–28.

    PubMed  Google Scholar 

  176. Pecere T, Gazzola MV, Mucignat C, et al. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res. 2000;60(11):2800–4.

    CAS  PubMed  Google Scholar 

  177. Cárdenas C, Quesada AR, Medina MA. Evaluation of the anti-angiogenic effect of aloe-emodin. Cell Mol Life Sci. 2006;63(24):3083–9.

    Article  PubMed  CAS  Google Scholar 

  178. Suboj P, Babykutty S, Valiyaparambil Gopi DR, Nair RS, Srinivas P, Gopala S. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB. Eur J Pharm Sci. 2012;45(5):581–91.

    Article  CAS  PubMed  Google Scholar 

  179. Martínez-Poveda B, Quesada AR, Medina MA. Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur J Pharmacol. 2005;516(2):97–103.

    Article  PubMed  CAS  Google Scholar 

  180. Barliya T, Mandel M, Livnat T, Weinberger D, Lavie G. Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by hypericin: a unique cancer therapy. PLoS One. 2011;6(9):e22849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Agostinis P, Vantieghem A, Merlevede W, de Witte PAM. Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol. 2002;34:221–41.

    Article  CAS  PubMed  Google Scholar 

  182. Yee KK, Soo KC, Olivo M. Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int J Mol Med. 2005;16(6):993–1002.

    CAS  PubMed  Google Scholar 

  183. Bhuvaneswari R, Yuen GY, Chee SK, Olivo M. Hypericin-mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins. Photochem Photobiol Sci. 2007;6(12):1275–83.

    Article  CAS  PubMed  Google Scholar 

  184. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225.

    Article  CAS  PubMed  Google Scholar 

  185. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267(1):133–64.

    Article  CAS  PubMed  Google Scholar 

  186. Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol. 2007;595:149–72.

    Article  PubMed  Google Scholar 

  187. Howells LM, Mahale J, Sale S, et al. Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. Pharmacol Exp Ther. 2014;350(3):483–94.

    Article  CAS  Google Scholar 

  188. Shanmugam MK, Rane G, Kanchi MM, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules. 2015;20:2728–69.

    Article  PubMed  CAS  Google Scholar 

  189. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15:195–218.

    Article  CAS  PubMed  Google Scholar 

  190. Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors. 2013;39:2–13.

    Article  CAS  PubMed  Google Scholar 

  191. Norris L, Karmokar A, Howells L, Steward WP, Gescher A, Brown K. The role of cancer stem cells in the anti-carcinogenicity of curcumin. Mol Nutr Food Res. 2013;57(9):1630–7.

    Article  CAS  PubMed  Google Scholar 

  192. Choi H, Chun YS, Kim SW, Kim MS, Park JW. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol. 2006;70(5):1664–71.

    Article  CAS  PubMed  Google Scholar 

  193. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol. 2007;595:185–95.

    Article  PubMed  Google Scholar 

  194. Chakraborty G, Jain S, Kale S, et al. Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression. Mol Med Rep. 2008;1(5):641–6.

    CAS  PubMed  Google Scholar 

  195. Lin YG, Kunnumakkara AB, Nair A, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 2007;13(11):3423–30.

    Article  CAS  PubMed  Google Scholar 

  196. Chiablaem K, Lirdprapamongkol K, Keeratichamroen S, Surarit R, Svasti J. Curcumin suppresses vasculogenic mimicry capacity of hepatocellular carcinoma cells through STAT3 and PI3K/AKT inhibition. Anticancer Res. 2014;34(4):1857–64.

    CAS  PubMed  Google Scholar 

  197. Gescher A, Steward WP, Brown K. Resveratrol in the management of human cancer: how strong is the clinical evidence? Ann N Y Acad Sci. 2013;1290:12–20.

    Article  CAS  PubMed  Google Scholar 

  198. Yang X, Li X, Ren J. From French Paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anticancer Agents Med Chem. 2014;14(6):806–25.

    Article  CAS  PubMed  Google Scholar 

  199. Chen JC, Chen Y, Lin JH, Wu JM, Tseng SH. Resveratrol suppresses angiogenesis in gliomas: evaluation by color Doppler ultrasound. Anticancer Res. 2006;26(2A):1237–45.

    CAS  PubMed  Google Scholar 

  200. Park SY, Jeong KJ, Lee J, et al. Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: their inhibition by resveratrol. Cancer Lett. 2007;258(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  201. Yu HB, Zhang HF, Zhang X, et al. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism. Hepatogastroenterology. 2010;57(102-103):1241–6.

    CAS  PubMed  Google Scholar 

  202. Trapp V, Parmakhtiar B, Papazian V, Willmott L, Fruehauf JP. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis. 2010;13(4):305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Igura K, Ohta T, Kuroda Y, Kaji K. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett. 2001;171(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  204. Bråkenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J. 2001;15(10):1798–800.

    PubMed  Google Scholar 

  205. Alex D, Leong EC, Zhang ZJ, et al. Resveratrol derivative, trans-3,5,4′-trimethoxystilbene, exerts antiangiogenic and vascular-disrupting effects in zebrafish through the downregulation of VEGFR2 and cell-cycle modulation. J Cell Biochem. 2010;109(2):339–46.

    CAS  PubMed  Google Scholar 

  206. Wang H, Zhou H, Zou Y, et al. Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem Pharmacol. 2010;80(9):1386–95.

    Article  CAS  PubMed  Google Scholar 

  207. Singh CK, Ndiaye MA, Ahmad N. Resveratrol and cancer: challenges for clinical translation. Biochim Biophys Acta. 2015;1852:1178–85.

    Article  CAS  PubMed  Google Scholar 

  208. Novelle MG, Wahl D, Diéguez C, Bernier M, de Cabo R. Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev. 2015;21:1–15.

    Article  CAS  PubMed  Google Scholar 

  209. Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC. Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev. 2010;68(4):191–206.

    Article  PubMed  Google Scholar 

  210. Fortes C, García-Vilas J, Quesada AR, Medina MA. Evaluation of the anti-angiogenic potential of hydroxytyrosol and tyrosol, two bio-active phenolic compounds of extra virgin olive oil, in endothelial cell cultures. Food Chem. 2012;134:134–40.

    Article  CAS  Google Scholar 

  211. Scoditti E, Calabriso N, Massaro M, et al. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys. 2012;527(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  212. Lamy S, Ouanouki A, Béliveau R, Desrosiers RR. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation. Exp Cell Res. 2014;322(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  213. Brewer L, Rogers S. Fumaric acid esters in the management of severe psoriasis. Clin Exp Dermatol. 2007;32(3):246–9.

    Article  CAS  PubMed  Google Scholar 

  214. Seidel P, Merfort I, Hughes JM, Oliver BG, Tamm M, Roth M. Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L326–39.

    Article  CAS  PubMed  Google Scholar 

  215. Loewe R, Valero T, Kremling S, et al. Dimethylfumarate impairs melanoma growth and metastasis. Cancer Res. 2006;66(24):11888–96.

    Article  CAS  PubMed  Google Scholar 

  216. Yamazoe Y, Tsubaki M, Matsuoka H, et al. Dimethylfumarate inhibits tumor cell invasion and metastasis by suppressing the expression and activities of matrix metalloproteinases in melanoma cells. Cell Biol Int. 2009;33(10):1087–94.

    Article  CAS  PubMed  Google Scholar 

  217. Valero T, Steele S, Neumüller K, et al. Combination of dacarbazine and dimethylfumarate efficiently reduces melanoma lymph node metastasis. J Invest Dermatol. 2010;130(4):1087–94.

    Article  CAS  PubMed  Google Scholar 

  218. García-Caballero M, Marí-Beffa M, Medina MÁ, Quesada AR. Dimethylfumarate inhibits angiogenesis in vitro and in vivo: a possible role for its antipsoriatic effect? J Invest Dermatol. 2011;131(6):1347–55.

    Article  PubMed  CAS  Google Scholar 

  219. Kakizaki I, Kojima K, Takagaki K, et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J Biol Chem. 2004;279:33281–9.

    Article  CAS  PubMed  Google Scholar 

  220. Kudo D, Kon A, Yoshihara S, et al. Effect of a hyaluronan synthase suppressor, 4- methylumbelliferone, on B16F-10 melanoma cell adhesion and locomotion. Biochem Biophys Res Commun. 2004;321:783–7.

    Article  CAS  PubMed  Google Scholar 

  221. Yoshihara S, Kon A, Kudo D, et al. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett. 2005;579:2722–6.

    Article  CAS  PubMed  Google Scholar 

  222. Arai E, Nishida Y, Wasa J, et al. Inhibition of hyaluronan retention by 4-methylumbelliferone suppresses osteosarcoma cells in vitro and lung metastasis in vivo. Br J Cancer. 2011;105:1839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lokeshwar VB, Lopez LE, Munoz D, et al. Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res. 2010;70:2613–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Urakawa H, Nishida Y, Wasa J, et al. Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo. Int J Cancer. 2012;130:454–66.

    Article  CAS  PubMed  Google Scholar 

  225. García-Vilas JA, Quesada AR, Medina MÁ. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J Agric Food Chem. 2013;61(17):4063–71.

    Article  PubMed  CAS  Google Scholar 

  226. Medina MA, Martínez-Poveda B, Amores-Sánchez MI, Quesada AR. Hyperforin: more than an antidepressant bioactive compound? Life Sci. 2006;79(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  227. Martínez-Poveda B, Quesada AR, Medina MA. Hyperforin, a bio-active compound of St. John’s Wort, is a new inhibitor of angiogenesis targeting several key steps of the process. Int J Cancer. 2005;117(5):775–80.

    Article  PubMed  CAS  Google Scholar 

  228. Martínez-Poveda B, Verotta L, Bombardelli E, Quesada AR, Medina MA. Tetrahydrohyperforin and octahydrohyperforin are two new potent inhibitors of angiogenesis. PLoS One. 2010;5(3):e9558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Lorusso G, Vannini N, Sogno I, et al. Mechanisms of Hyperforin as an anti-angiogenic angioprevention agent. Eur J Cancer. 2009;45(8):1474–84.

    Article  CAS  PubMed  Google Scholar 

  230. Medina MA, Quesada AR. Dietary proteins and angiogenesis. Nutrients. 2014;6:371–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Larsen TM, Dlaskov SM, van Baak M, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363:2102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rizkalla SW, Prifti E, Cotillard A, et al. Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am J Clin Nutr. 2012;95:49–63.

    Article  CAS  PubMed  Google Scholar 

  233. Frigolet ME, Torres N, Uribe-Figueroa L, et al. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats. J Nutr Biochem. 2011;22:118–29.

    Article  CAS  PubMed  Google Scholar 

  234. Frigolet MI, Torres N, Tovar AR. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats. Br J Nutr. 2012;107:36–44.

    Article  CAS  PubMed  Google Scholar 

  235. Fett JW, Strydom DJ, Lobb RR, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985;24:5480–6.

    Article  CAS  PubMed  Google Scholar 

  236. Strydom DJ, Bond MD, Vallee BL. An angiogenic protein from bovine serum and milk. Purification and primary structure of angiogenin-2. Eur J Biochem. 1997;247:535–44.

    Article  CAS  PubMed  Google Scholar 

  237. Neutzner M, López T, Feng X, et al. MFH-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis. Cancer Res. 2007;67:6777–85.

    Article  CAS  PubMed  Google Scholar 

  238. Yoo YC, Watanabe S, Watanabe R, Hata K, Shimazaki K, Azuma I. Bovine lactoferrin and lactoferricin, a peptide derived from bovine lactoferrin, inhibit tumor metastasis in mice. Jpn J Cancer Res. 1997;88:184–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Our work in angiogenesis is supported by grant PIE P12-CTS-1507 (Andalusian Government) and “Fondo Europeo de Desarrollo Regional” (FEDER) and BIO2014-56092-R (MINECO and FEDER). The “Centros de Investigación Biomédica en Red” or “CIBER de Enfermedades Raras” is an initiative from the “Instituto de Salud Carlos III” (ISCIII) (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rodríguez Quesada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

García-Caballero, M., Martínez Poveda, B., Medina, M.Á., Rodríguez Quesada, A. (2016). Targeting Tumor Angiogenesis for Cancer Prevention. In: Chatterjee, M. (eds) Molecular Targets and Strategies in Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-31254-5_6

Download citation

Publish with us

Policies and ethics