Skip to main content

Density Functional Calculations

  • Chapter
  • First Online:
Computational Chemistry

Abstract

Density functional theory is based on the two Hohenberg-Kohn theorems, which state that the ground-state properties of an atom or molecule are determined by its electron density function, and that a trial electron density must give an energy greater than or equal to the true energy (the latter theorem is true only if the exact functional could be used). In the Kohn-Sham approach the energy of a system in formulated as a deviation from the energy of an idealized system with noninteracting electrons. From the energy equation, by minimizing the energy with respect to the Kohn-Sham orbitals the Kohn-Sham equations can be derived, analogously to the Hartree-Fock equations. Finding good functionals is the main problem in DFT. Various levels of DFT and kinds of functionals are discussed. The mutually related concepts of electronic chemical potential, electronegativity, hardness, softness, and the Fukui function are discussed.

My other hope is that…a basically new ab initio treatment capable of giving chemically accurate results a priori, is achieved soon.

M.J.S. Dewar , A Semiempirical Life, 1992.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Walter Kohn, born in Vienna 1923. B.A., B. Sc., University of Toronto, 1945, 1946. Ph.D. Harvard, 1948. Instructor in physics, Harvard, 1948–1950. Assistant, Associate, full Professor, Carnegie Mellon University, 1950–1960. Professor of physics, University of California at Santa Diego, 1960–1979; University of California at Santa Barbara 1979-present. Nobel Prize in chemistry 1998. Died Santa Barbara, CA, 2016.

  2. 2.

    M06: :”M zero six", or colloquially “M oh six”. A descendant of M05, Minnesota ‘05 (2005): Y. Zhao, N. E. Schultz, D. E. Truhlar, J. Chem. Phys., 2005, 123, 161103.

  3. 3.

    Personal communication from Professor J. P. Perdew, 2009 November 7. As of 2015 February, TPSS evidently still held essentially this position, although a nonempirical meta-GGA close to TPSS for molecules, but more accurate for solids, revTPSS (revised TPSS) had been developed (personal communication from Professor J. P. Perdew, 2015 February 25).

  4. 4.

    Kenichi Fukui, born Nara, Japan, 1918. Ph.D. Kyoto Imperial University 1948, Professor Kyoto Imperial University 1951. Nobel Prize 1981. Died 1998.

References

  1. (a) Whitaker A (1996) Einstein, Bohr and the quantum dilemma. Cambridge University Press; (b) Yam P (1997) Scientific American, June 1997, p. 124; (c) Albert DZ (1994) Scientific American, May 1994, p. 58; (d)Albert DZ (1992) Quantum mechanics and experience. Harvard University Press, Cambridge, MA; (e) Bohm D, Hiley HB (1992) The undivided universe. Routledge, New York; (f) Baggott J (1992) The meaning of quantum theory. Oxford, New York; (g) Jammer M (1974) The philosophy of quantum mechanics. Wiley, New York

    Google Scholar 

  2. Bader RFW (1990) Atoms in molecules. Clarendon Press, Oxford/New York

    Google Scholar 

  3. Reference 2, pp 7–8

    Google Scholar 

  4. Shusterman GP, Shusterman AJ (1997) J Chem Educ 74:771

    Article  CAS  Google Scholar 

  5. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Clarendon Press/Oxford University Press, Oxford/New York, p 53

    Google Scholar 

  6. (a) Wilson E (1998) Chem Eng News, October 19, 12; (b) Malakoff D (1998) Science 282:610

    Google Scholar 

  7. See e.g. Diacu F (1996) The mathematical intelligencer. 18:66

    Google Scholar 

  8. Kohn W (1951) Phys Rev 84:495

    Google Scholar 

  9. Cf. Levine IN (2010) Quantum chemistry, 7th edn. Prentice Hall, Upper Saddle River, section 14.1, particularly equation 14.8. See too p. 597, problem 16.28

    Google Scholar 

  10. Löwdin P-O (1955) Phys Rev 97:1474

    Article  Google Scholar 

  11. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Clarendon Press/Oxford University Press, Oxford/New York

    Google Scholar 

  12. Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Upper Saddle River; section 16.5

    Google Scholar 

  13. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley; chapter 8

    Google Scholar 

  14. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, New York, chapter 6

    Google Scholar 

  15. Peverati R, Truhlar DG (2014) Phil Trans R Soc A, Math Phys Eng Sci 372

    Google Scholar 

  16. Burke K (2012) J Chem Phys 136:150901(1)

    Google Scholar 

  17. Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289

    Article  CAS  Google Scholar 

  18. (a) Wagner JP, Schreiner PR (2015) Angew Chem Int Ed 54:12274 ; (b) Corminboeuf C (2014) Acc Chem Res 47:3217

    Google Scholar 

  19. Various authors (2014) Acc Chem Res 2014 47(11)

    Google Scholar 

  20. Jones RO (2015) Rev Mod Phys 87:897

    Article  Google Scholar 

  21. E.g. Griffiths DJ (1995) Introduction to quantum mechanics. Prentice-Hall, Engelwood Cliffs

    Google Scholar 

  22. (a) Earlier work (1927) by Fermi was published in Italian and came to the attention of the physics community with a paper in German: Fermi E (1928) Z Phys 48:73. This appears in English translation in March NH (1975) Self-consistent fields in atoms. Pergamon, New York; (b) Thomas LH (1927) Proc Cambridge Phil Soc 23:542

    Google Scholar 

  23. Reference 11, chapter 6

    Google Scholar 

  24. (a) Slater JC (1975) Int J Quantum Chem Symp 9:7. Reviews; (b) Connolly JWD in Semiempirical methods of electronic structure calculations part A: techniques, Segal GA Ed., Plenum, New York, 1977; (c) Johnson KH (1973) Adv Quantum Chem 7:143

    Google Scholar 

  25. Slater JC (1951) Phys Rev 81:385

    Article  CAS  Google Scholar 

  26. For a personal history of much of the development of quantum mechanics, with significant emphasis on the Xα method, see: Slater JC (1975) Solid-state and molecular theory: a scientific biography. Wiley, New York

    Google Scholar 

  27. Reference 12, pp 552–555

    Google Scholar 

  28. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  29. Reference 11, section 3.4

    Google Scholar 

  30. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  31. Reference 12, p 404

    Google Scholar 

  32. Reference 14, p 241

    Google Scholar 

  33. Reference 11, sections 7.1–7.3

    Google Scholar 

  34. Reference 12, section 11.8

    Google Scholar 

  35. Reference. 11, chapter 7

    Google Scholar 

  36. Reference 11, Appendix A.

    Google Scholar 

  37. Reference 12, p 558

    Google Scholar 

  38. Merrill GN, Gronert S, Kass SR (1997) J Phys Chem A 101:208

    Article  CAS  Google Scholar 

  39. Reference 11, p 185

    Google Scholar 

  40. Genesis 28. 10–12

    Google Scholar 

  41. The term was apparently first enunciated by J. P. Perdew at the DFT2000 symposium in Menton, France. It first appeared in print in: Perdew JP, Schmidt K (2001) Density functional theory and its applications to materials, Van Doren VE, Van Alsenoy K, Geerlings P (eds) AIP Press, New York. This ladder term has also been used, oddly, in science in a context that has no connection with DFT, trapping a transition state in a protein bottle: Romney DK, Miller SJ (2015) Science 347:829; Pearson AD, Mills JM, Song Y, Nasertorabi F, Han GW, Baker D, Stevens RC, Schultz PG (2015) Science 347:863

    Google Scholar 

  42. Mattsson AE (2002) Science 298:759

    Article  CAS  Google Scholar 

  43. Reference 14, pp 244–245

    Google Scholar 

  44. Sousa SF, Fernandes OA, Ramos MJ (2007) J Phys Chem A 111:10439

    Article  CAS  Google Scholar 

  45. (a) Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1; (b) Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Google Scholar 

  46. Riley KE, Op’t Holt BT, Merz KM Jr (2007) J Chem Theory Comput 3:404

    Article  Google Scholar 

  47. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123:062201

    Article  Google Scholar 

  48. Kurth S, Perdew JP, Blaha P (1999) Int J Quantum Chem 75:889

    Article  CAS  Google Scholar 

  49. Taylor AE (1955) Advanced calculus. Blaidsell Publishing Company, New York,; p 371

    Google Scholar 

  50. Reference 11, pp 173–174

    Google Scholar 

  51. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  52. St-Amant A (1996) Chapter 5 in reviews in computational chemistry, vol 7. Lipkowitz KB, Boyd DB (eds) VCH, New York; p. 223

    Google Scholar 

  53. reference 12, p 565

    Google Scholar 

  54. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  55. Head-Gordon M (1996) J Phys Chem 100:13213

    Article  CAS  Google Scholar 

  56. Brack M, Jennings BK, Chu YH (1976) Phys Lett 65B:1

    Article  CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:1372, 5648

    Google Scholar 

  58. Stephens PJ, Devlin JJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  59. E.g. Perdew JP (1995) Nonlocal density functionals for exchange and correlation: theory and application. In: Ellis DE (ed) Density functional theory of molecules, clusters, and solids. Kluwer, Dordrecht

    Google Scholar 

  60. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397, and references therein. B2PLYP does have empirical parameters, albeit just two

    Google Scholar 

  61. Wennmohs F, Neese F (2008) Chem Phys 343:217

    Article  CAS  Google Scholar 

  62. (a) London F (1927) Zeitschrift für Physik 44(6–7):455–472; (b) London F (1930) Zeitschrift für Physik 63(3–4):245–279

    Google Scholar 

  63. (a) Klimeš J, Michaelides A (2012) J Chem Phys 137:120901; (b) Guidez EB, Gordon M S (2015) J Phys Chem A 119:2161; (c) Conrad JA, Gordon MS (2015) J Phys Chem A 119: 5377; (d) Kruse H, Goerigk L, Grimme S (2012) J Org Chem 77:10824; (e Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670; (f) Martin JML (2013) J Phys Chem A 117:3118; (g) van Santen JA, DiLabio GA (2015) J Phys Chem A 119:6710 ; (h) Otero-de-la-Roza A, Johnson ER (2015) J Chem Theory Comput 113:4033

    Google Scholar 

  64. Grimme S, Schreiner PR (2011) Angew Chem Int 50:12639

    Article  CAS  Google Scholar 

  65. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    Article  CAS  Google Scholar 

  66. Clark T (2000) J Mol Struct (Theochem) 530:1

    Google Scholar 

  67. Nooijen M (2009) Adv Quant Chem 56:181

    Article  CAS  Google Scholar 

  68. Dewar MJS (1992) “A semiempirical life”, profiles, pathways and dreams series, J. I. Seeman, Edition, American Chemical Society, Washington, DC. p 185

    Google Scholar 

  69. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  70. Reference 12: HF p. 561, UHF pp. 563, 564, G2 pp. 566, 567, MP2, G3 p. 567, CCSD(T) p. 571, CI p. 572

    Google Scholar 

  71. Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction, Inc., Irvine

    Google Scholar 

  72. Hehre WJ, Lou L (1997) A guide to density functional calculations in Spartan. Wavefunction Inc., Irvine

    Google Scholar 

  73. Hehre WJ, Radom L, Schleyer pvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York; section 6.2

    Google Scholar 

  74. H 2 C=CHOH reaction The only quantitative experimental information on the barrier for this reaction seems to be: Saito S (1976) Chem Phys Lett 42:399, halflife in the gas phase in a Pyrex flask at room temperature ca. 30 minutes. From this one calculates (chapter 5, section 5.5.2.2d, Eq (5.202)) a free energy of activation of 93 kJ mol-1. Since isomerization may be catalyzed by the walls of the flask, the purely concerted reaction may have a much higher barrier. This paper also shows by microwave spectroscopy that ethenol has the O-H bond syn to the C=C. The most reliable measurement of the ethenol/ethanal equilibrium constant, by flash photolysis, is 5.89 × 10-7 in water at room temperature (Chiang Y, Hojatti M, Keeffe JR, Kresge AK, Schepp NP, Wirz J (1987) J Am Chem Soc 109:4000). This gives a free energy of equilibrium of 36 kJ mol-1 (ethanal 36 kJ mol-1 below ethenol). HNC reaction The barrier for rearrangement of HNC to HCN has apparently never been actually measured. The equilibrium constant in the gas phase at room temperature was calculated (Maki AG, Sams RL (1981) J Chem Phys 75:4178) at 3.7 × 10-8, from actual measurements at higher temperatures; this gives a free energy of equilibrium of 42 kJ mol-1 (HCN 42 kJ mol-1 below HNC). According to high-level ab initio calculations supplemented with experimental data (Active Thermochemical Tables) HCN lies 62.35 ± 0.36 kJ mol-1 (converting the reported spectroscopic cm-1 energy units to kJ mol-1) below HNC; this is “a recommended value…based on all currently available knowledge”: Nguyen TL, Baraban JH, Ruscic B, Stanton JF (2015) J Phys Chem 119:10929. CH 3 NC reaction The reported experimental activation energy is 161 kJ mol-1 (Wang D, Qian X (1996) J Peng Chem Phys Lett 258:149; Bowman JM, Gazy B, Bentley JA, Lee TJ, Dateo CE (1993) J Chem Phys 99:308; Rabinovitch BS, Gilderson PW (1965) J Am Chem Soc 87:158; Schneider FW, Rabinovitch BS (1962) J Am Chem Soc 84:4215). The energy difference between CH3NC and CH3NC has apparently never been actually measured. Cyclopropylidene reaction Neither the barrier nor the equilibrium constant for the cyclopropylidene/allene reaction have been measured. The only direct experimental information of these species come from the failure to observe cyclopropylidene at 77 K (Chapman OL (1974) Pure and applied chemistry 40:511). This and other experiments (references in Bettinger HF, Schleyer PvR, Schreiner PR, Schaefer HF (1997) J Org Chem 62:9267 and in Bettinger HF, Schreiner PR, Schleyer PvR, Schaefer HF (1996) J Phys Chem 100:16147) show that the carbene is much higher in energy than allene and rearranges very rapidly to the latter. Bettinger et al. 1997 (above) calculate the barrier to be 21 kJ mol-1 (5 kcal mol-1)

    Google Scholar 

  75. Spartan is an integrated molecular mechanics, ab initio and semiempirical program with an outstanding input/output graphical interface that is available in UNIX workstation and PC versions: Wavefunction Inc. http://www.wavefun.com. 18401 Von Karman, Suite 370, Irvine CA 92715, USA

  76. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865; Erratum: Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Google Scholar 

  77. Tao J, Pewdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  78. Wheeler SE, Houk KN (2010) J Chem Theory Comput 6:395

    Article  CAS  Google Scholar 

  79. Scheiner AC, Baker J, Andzelm JW (1997) J Comput Chem 18:775

    Article  CAS  Google Scholar 

  80. El-Azhary AA (1996) J Phys Chem 100:15056

    Article  CAS  Google Scholar 

  81. Bauschlicher CW Jr, Ricca A, Partridge H, Langhoff SR (1997) Recent advances in density functional methods. Part II. Chong DP (ed) World Scientific, Singapore

    Google Scholar 

  82. (a) Scott AP, Radom L (1996) J Phys Chem 100:16502; (b) Sibaev M, Crittenden DL (2015) J Phys Chem A 119:13107

    Google Scholar 

  83. (a) As of early-2015, the latest “full” version (as distinct from more frequent revisions) of the Gaussian suite of programs was Gaussian 09. Gaussian is available for several operating systems; see Gaussian, Inc., http://www.gaussian.com. 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA; (b)The statistical mechanics routines in Gaussian: Ochterski JW Gaussian white paper “Thermochemistry in Gaussian”, http://www.gaussian.com/g_whitepap/thermo.htm

  84. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255; Chart 1

    Google Scholar 

  85. Hammond GS (1955) J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

  86. From the NIST website. http://webbook.nist.gov/chemistry/: Chase Jr MW (1998) NIST-JANAF themochemical tables, 4th edn. J Phys Chem Ref. Data, Monograph 9, 1998, 1–1951

  87. Peterson GA (1998) Chapter 13: Computational thermochemistry. In: Irikura KK, Frurip DJ (eds) American Chemical Society, Washington, DC

    Google Scholar 

  88. Goldstein E, Beno B, Houk KN (1996) J Am Chem Soc 118:6036

    Article  CAS  Google Scholar 

  89. Martell JM, Goddard JD, Eriksson L (1997) J Phys Chem 101:1927

    Article  CAS  Google Scholar 

  90. The data are from Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction, Inc., Irvine; Chapter 4. In each case, the first 10 examples from the relevant table were used

    Google Scholar 

  91. Wiberg KB, Ochterski JW (1997) J Comput Chem 18:108

    Article  CAS  Google Scholar 

  92. Rousseau E, Mathieu D (2000) J Comput Chem 21:367

    Article  CAS  Google Scholar 

  93. Ventura ON, Kieninger M, Cachau RE (1999) J Phys Chem A 103:147

    Article  CAS  Google Scholar 

  94. For this and other misgivings about the multistep methods see Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester; pp 241–244

    Google Scholar 

  95. CBS-QB3 was found to give unacceptable errors for halogenated compounds: Bond D, J Org Chem 72:7313

    Google Scholar 

  96. For pericyclic reactions: Ess DH, Houk KN (2005) J Phys Chem A 109:9542

    Google Scholar 

  97. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  98. del Rio A, Bourcekkine A, Meinel J (2003) J Comput Chem 24:2093

    Article  Google Scholar 

  99. Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385

    Article  CAS  Google Scholar 

  100. Glukhovtsev MN, Bach RD, Pross A, Radom L (1996) Chem Phys Lett 260:558

    Article  CAS  Google Scholar 

  101. Bell RL, Tavaeras DL, Truong TN, Simons J (1997) Int J Quantum Chem 63:861

    Article  CAS  Google Scholar 

  102. Truong TN, Duncan WT, Bell RL (1996) Chemical applications of density functional theory. Laird BB, Ross RB, Ziegler T (eds) American Chemical Society, Washington, DC

    Google Scholar 

  103. Zhang Q, Bell RL (1995) J Phys Chem 99:592

    Article  CAS  Google Scholar 

  104. Eckert F, Rauhut G (1998) J Am Chem Soc 120:13478

    Article  CAS  Google Scholar 

  105. Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063

    Article  CAS  Google Scholar 

  106. Jursic BS (1996) Recent developments and applications of modern density functional theory. In: Seminario JM (ed) Elsevier, Amsterdam

    Google Scholar 

  107. Brown SW, Rienstra-Kiracofe JC, Schaefer HF (1999) J Phys Chem A 103:4065

    Article  CAS  Google Scholar 

  108. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester; p 309

    Google Scholar 

  109. Geerlings P, De Profit F, Martin JML (1996) Recent developments and applications of modern density functional theory. In: Seminario JM (ed) Elsevier, Amsterdam

    Google Scholar 

  110. Lendvay G (1994) J Phys Chem 98:6098

    Article  CAS  Google Scholar 

  111. Boyd RJ, Wang J, Eriksson LA (1995) Recent advances in density functional methods Part I. Chong DP (ed) World Scientific, Singapore

    Google Scholar 

  112. Reference 12, sections 9.8, 9.9

    Google Scholar 

  113. Stratman RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  Google Scholar 

  114. Wiberg KB, Stratman RE, Frisch MJ (1998) Chem Phys Lett 297:60

    Article  CAS  Google Scholar 

  115. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, p 218

    Google Scholar 

  116. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J Am Chem Soc 128:2072

    Article  CAS  Google Scholar 

  117. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  118. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497

    Article  CAS  Google Scholar 

  119. Frisch MJ, Trucks GW, Cheeseman JR (1996) Recent developments and applications of modern density functional theory. In: Seminario JM (ed) Elsevier, Amsterdam

    Google Scholar 

  120. Rablen PR, Pearlman SA, Finkbiner J (2000) J Phys Chem A 103:7357

    Article  Google Scholar 

  121. Sefzik TH, Tureo D, Iuliucci RJ (2005) J Phys Chem A 109:1180

    Article  CAS  Google Scholar 

  122. Wu A, Zhang Y, Xu X, Yan Y (2007) J Comput Chem 28:2431

    Article  CAS  Google Scholar 

  123. Zhao Y, Truhlar D (2008) J Phys Chem A 112:6794

    Article  CAS  Google Scholar 

  124. Pérez M, Peakman TM, Alex A, Higginson PD, Mitchell JC, Snowden MJ, Morao I (2006) J Org Chem 71:3103

    Article  Google Scholar 

  125. Castro C, Karney WL, Vu CMH, Burkhardt SE, Valencia MA (2005) J Org Chem 70:3602

    Article  CAS  Google Scholar 

  126. Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds, 4th edn. Wiley, New York; methane, 191, 219; cyclopropane, 193, 220; benzene, 196, 222; acetone, 227

    Google Scholar 

  127. Patchkovskii S, Thiel W (1999) J Comput Chem 20:1220

    Article  CAS  Google Scholar 

  128. Muchall HM, Werstiuk NH, Choudhury B (1998) Can J Chem 76:227

    Google Scholar 

  129. Levin RD, Lias SG (1971–1981) Ionization potential and appearance potential measurements. National Bureau of Standards, Washington, DC

    Google Scholar 

  130. Curtis LA, Nobes RH, Pople JA, Radom I (1992) J Chem Phys 97:6766

    Article  Google Scholar 

  131. Golas E, Lewars E, Liebman J (2009) J Phys Chem A 113:9485

    Article  CAS  Google Scholar 

  132. (a) Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383; (b) Chong DP, Gritsenko OV, Baerends EJ (2002) J Chem Phys 116:1760

    Google Scholar 

  133. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, p 272

    Google Scholar 

  134. Stowasser R, Hoffmann R (1999) J Am Chem Soc 121:3414

    Article  CAS  Google Scholar 

  135. Salzner U, Lagowski JB, Pickup PG, Poirier RA (1997) J Comput Chem 18:1943

    Article  CAS  Google Scholar 

  136. Vargas R, Garza J, Cedillo A (2005) J Phys Chem A 109:8880

    Article  CAS  Google Scholar 

  137. Zhan C-C, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184

    Article  CAS  Google Scholar 

  138. Zhang GZ, Musgrave CB (2005) J Phys Chem A 111:1554

    Article  Google Scholar 

  139. Hunt WJ, Goddard WA (1969) Chem Phys Lett 3:414

    Article  CAS  Google Scholar 

  140. van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Theory Comput 10:4432

    Article  Google Scholar 

  141. Schmidt MW, Hull EA, Windus TL (2015) J Phys Chem A 119:10408

    Article  CAS  Google Scholar 

  142. Berzelius JJ (1819) Essai sur la théorie des proportions chimiques et sur l’influence chimique de l’électricité; see Nye MJ (1993) From chemical philosophy to theoretical chemistry. University of California Press, Berkeley; p 64

    Google Scholar 

  143. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York, pp 90–95

    Google Scholar 

  144. Mulliken RS (1952) J Am Chem Soc 74:811

    Article  CAS  Google Scholar 

  145. (a) Pearson RG (1963) J Am Chem Soc 85:3533; (b) Pearson RG (1963) Science 151:172

    Google Scholar 

  146. Footnote in reference 145a, on p 3533

    Google Scholar 

  147. (a) Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson and Ross, Stroudenburg; (b) Lo TL (1977) Hard and soft acids and basis in organic chemistry. Academic Press, New York

    Google Scholar 

  148. Dewar MJS (1992) A semiempirical life. American Chemical Society, Washington, DC, p 160

    Google Scholar 

  149. Ritter S (2003) Chem Eng News, 17 February, 50

    Google Scholar 

  150. Parr RG, Yang W (1984) J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  151. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford, New York, chapters 4 and 5 in particular

    Google Scholar 

  152. (a) Gibbs JW (1993) The scientific papers of J. Willard Gibbs: vol I, Thermodynamics. Ox Bow, Woodbridge; (b) Confronting confusion about chemical potential: Kaplan TA (2006) J Stat Phys 122:1237; (c) An attempt to give an intuitive feeling for chemical potential: Job G, Herrmann F (2006) European J Phys 27:353; (d) An explanation of chemical potential in different ways: Baierlein R (2001) Am J Phys 69:423

    Google Scholar 

  153. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547

    Article  CAS  Google Scholar 

  154. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  155. Mulliken RS (1934) J Chem Phys 2:782

    Article  CAS  Google Scholar 

  156. Pearson RG (1999) J Chem Educ 76:267

    Article  CAS  Google Scholar 

  157. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  158. Toro-Labbé A (1999) J Phys Chem A 103:4398

    Article  Google Scholar 

  159. Nguyen LT, Le TN, De Proft F, Chandra AK, Langenaeker W, Nguyen MT, Geerlings P (1999) J Am Chem Soc 121:5992

    Article  CAS  Google Scholar 

  160. (a) Fukui K (1987) Science 218:747; (b) Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New York; (c) Fukui K (1971) Acc Chem Res 57:4

    Google Scholar 

  161. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708

    Article  CAS  Google Scholar 

  162. Carey FA, Sundberg RL (2000) Advanced organic chemistry, 3rd edn. Plenum, New York, p 437

    Google Scholar 

  163. Méndez F, Gázquez JL (1994) J Am Chem Soc 116:9298

    Article  Google Scholar 

  164. Damoun S, Van de Woude G, Choho K, Geerlings P (1999) J Phys Chem A 103:7861

    Article  CAS  Google Scholar 

  165. (a) Zhou Z, Parr RG (1989) J Am Chem Soc 111:7371; (b) Zhou Z, Parr RG, Garst JF (1988) Tetrahedron Lett 29:4843

    Google Scholar 

  166. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Clarendon Press/Oxford University Press, Oxford/New York, p 101

    Google Scholar 

  167. Melin J, Ayers PW, Ortiz JV (2007) J Phys Chem A 111:10017

    Article  CAS  Google Scholar 

  168. Padmanabhan J, Parthasarthi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) J Phys Chem A 111:9130

    Article  CAS  Google Scholar 

  169. Bulat FA, Chamorro E, Fuentealba P, Toro-Labbé A (2004) J Phys Chem A 108:342

    Article  CAS  Google Scholar 

  170. Melin J, Aparicio F, Subramanian V, Galván M, Chattaraj PK (2004) J Phys Chem A 108:2487

    Article  CAS  Google Scholar 

  171. (a) Koch W, Holthausen M (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York, part B, and refs. therein; (b) Frenking G (1997) J Chem Soc Dalton Trans 1653

    Google Scholar 

  172. Xu X, Zhang W, Tang M, Truhlar DG (2015) J Chem Theory Comput 11:2036

    Article  CAS  Google Scholar 

  173. Hong X, Holte D, Götz CG, Baran PS, Houk KN (2014) J Org Chem 79:12177

    Article  CAS  Google Scholar 

  174. (a) Kyistyan S, Pulay P (1994) Chem Phys Lett 229:175; (b) Perez-Jorda JM, Becke AD (1995) Chem Phys Lett 233:134

    Google Scholar 

  175. (a) Lozynski M, Rusinska-Roszak D, Mack H-G (1998) J Phys Chem A 102:2899; (b) Adamo C, Barone V (1997) Recent advances in density functional methods. Part II. In: Chong DP (ed) World Scientific, Singapore; (c) Sim F, St.-Amant A, Papai I, Salahub DR (1992) J Am Chem Soc 114:4391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Easier Questions

  1. 1.

    State the arguments for and against regarding DFT as being more a semiempirical than an ab initio-like theory.

  2. 2.

    What is the essential difference between wavefunction theory and DFT? What is it that, in principle anyway, makes DFT simpler than wavefunction theory?

  3. 3.

    Why can’t current DFT calculations be improved in a stepwise, systematic way, as can ab initio calculations?

  4. 4.

    Which of these prescriptions for dealing with a function are functionals: (1) square root of \( f(x).\;(2) \sin f(x).(3){\displaystyle \sum_{x=1}^3f(x)\cdot (4)}{\displaystyle \int f(x)dx}\cdot (5)\; \exp \left(f(x)\right). \)

  5. 5.

    For which class(es) of functions is the nth derivative of f(x) a functional?

  6. 6.

    Explain why a kind of molecular orbital is found in current DFT, although DFT is touted as an alternative to wavefunction theory.

  7. 7.

    What is fundamentally wrong with functionals that are not gradient-corrected?

  8. 8.

    The ionization energy of a molecule can be regarded as the energy required to remove an electron from its HOMO. How then would a pure density functional theory, with no orbitals, be able to calculate ionization energy?

  9. 9.

    Label these statements true or false: (1) For each molecular wavefunction there is an electron density function. (2) Since the electron density function has only x, y, z as its variables, DFT necessarily ignores spin. (3) DFT is good for transition metal compounds because it has been specifically parameterized to handle them. (4) In the limit of a sufficiently big basis set, a DFT calculation represents an exact solution of the Schrödinger equation. (5) The use of very big basis sets is essential with DFT. (6) A major problem in density functional theory is the prescription for going from the molecular electron density function to the energy.

  10. 10.

    Explain in words the meaning of the terms electronegativity, hardness, and the Fukui function.

Harder Questions

  1. 1.

    It is sometimes said that electron density is physically more real than a wavefunction. Do you agree? Is something that is more easily grasped intuitively necessarily more real?

  2. 2.

    A functional is a function of a function. Explore the concept of a function of a functional.

  3. 3.

    Why is it that the Hartree-Fock Slater determinant is an inexact representation of the wavefunction, but the DFT determinant for a system of noninteracting electrons is exact for this particular wavefunction?

  4. 4.

    Why do we expect the “unknown” term in the energy equation (E xc [ρ 0], in Eq. (7.21)) to be small?

  5. 5.

    Merrill et al. have said that “while solutions to the [HF equations] may be viewed as exact solutions to an approximate description, the [KS equations] are approximations to an exact description!” Explain.

  6. 6.

    Electronegativity is the ability of an atom or molecule to attract electrons Why then is it then (from one definition) the average of the ionization energy and the electron affinity (Eq. (7.32)), rather than simply the electron affinity?

  7. 7.

    Given the wavefunction of a molecule, it is possible to calculate the electron density function. Is it possible in principle to go in the other direction? Why or why not?

  8. 8.

    The multielectron wavefunction Ψ is a function of the spatial and spin coordinates of all the electrons. Physicists say that Ψ for any system tells us all that can be known about the system. Do you think the electron density function ρ tells us everything that can be known about a system? Why or why not?

  9. 9.

    If the electron density function concept is mathematically and conceptually simpler than the wavefunction concept, why did DFT come later than wavefunction theory?

  10. 10.

    For a spring or a covalent bond, the concepts of force and force constant can be expressed in terms of first and second derivatives of energy with respect to extension. If we let a “charge space” N replace the real space of extension of the spring or bond, what are the analogous concepts to force and force constant? Using the SI, derive the units of electronegativity and of hardness.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewars, E.G. (2016). Density Functional Calculations. In: Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30916-3_7

Download citation

Publish with us

Policies and ethics