Skip to main content

Gut–Brain Axis: A New Revolution to Understand the Pathogenesis of Autism and Other Severe Neurological Diseases

  • Chapter
  • First Online:
Book cover Human Nutrition from the Gastroenterologist’s Perspective

Abstract

The gut–brain axis (GBA) is a complex communication network interfacing the gut and the brain of a single individual. The central (CNS) and enteric (ENS) nervous systems are, of course, communicating; however, other pathways are involved in GBA, among which are immune activation, intestinal barrier function, and enteroendocrine signaling. All these communication lines are bidirectional and involve neuro-immuno-endocrine mediators. The reason for the development of such a complex network is to maintain gastrointestinal homeostasis keeping in mind its links with cognitive and affective functions. Recently, the role of enteric flora, or microbiota, has been recognized as a part of the gut–brain axis. The gut microbiota can modulate brain function, forming a crucial link in the bidirectional interactions between the intestine and the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314. doi:10.1038/nrgastro.2009.35306-14

    Article  CAS  PubMed  Google Scholar 

  2. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203–209

    PubMed  PubMed Central  Google Scholar 

  3. Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62, chapter 1, Elsevier Inc

    Article  PubMed  Google Scholar 

  4. Mayer EA, Savidge T, Shulman RJ (2014) Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146:1500–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Li Y, Tian Y, Huang C, Li D, Zhong Q, Ma X (2015) Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr Protein Pept Sci 16:1–12

    Article  Google Scholar 

  6. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoraides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van De Sande MMH, Van Buul VJ, Brouns FJPH (2014) Autism and nutrition: the role of the gut-brain axis. Nutr Res Rev. doi:10.1017/S0954422414000110

    Google Scholar 

  8. Mezzelani A, Landini M, Facchiano F, Raggi ME, Villa L, Molteni M, DeSantis B, Brera C, Caroli AM, Milanesi L, Marabotti A (2015) Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis. Nutr Neurosci 18:145–161

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nemani K, Hosseini Ghomi R, McCormick B, Fan X (2015) Schizophrenia and the gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 56:155–160

    Article  CAS  PubMed  Google Scholar 

  10. Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21(37):10609–10620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klingelhoefer L, Reichmann H (2015) Pathogenesis of Parkinson disease-the gut-brain axis and environmental factors. Nat Rev Neurol 11(11):625–636

    Article  CAS  PubMed  Google Scholar 

  12. Jackson JR, Eaton WW, Cascella NG, Fasano A, Kelly DL (2012) Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatr Q 83(1):91–102

    Article  PubMed  PubMed Central  Google Scholar 

  13. Catassi C, Elli L, Bonaz B, Bouma G, Carroccio A, Castillejo G, Cellier C, Cristofori F, de Magistris L, Dolinsek J, Dieterich W, Francavilla R, Hadjivassiliou M, Holtmeier W, Körner U, Leffler DA, Lundin KE, Mazzarella G, Mulder CJ, Pellegrini N, Rostami K, Sanders D, Skodje GI, Schuppan D, Ullrich R, Volta U, Williams M, Zevallos VF, Zopf Y, Fasano A (2015) Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): the Salerno experts’ criteria. Nutrient 7(6):4966–4977

    Article  Google Scholar 

  14. Wakefield AJ (2002) The Gut–Brain Axis in childhood developmental disorders. J Pediatr Gastroenterol Nutr 34:S14–S17

    Article  PubMed  Google Scholar 

  15. Butterworth RF (2000) Complications of cirrhosis III hepatic encephalopathy. J Hepatol 32(suppl 1):171–180

    Article  CAS  PubMed  Google Scholar 

  16. Fadgyas-Stanculete M, Buga AM, Popa-Wagner A, Dumitrascu DL (2014) The relationship between irritable bowel syndrome and psychiatric disorders: from molecular changes to clinical manifestations. J Mol Psychiatry 2:4–11

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gershon MD (1988) The second brain: a groundbreaking new understanding of nervous disorders of the stomach and intestine. Harper & Collins, New York

    Google Scholar 

  18. Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Magistris L, Picardi A, Sapone A, Cariello R, Siniscalco D, Bravaccio C, Pascotto A (2014) Intestinal barrier in autism. In: Patel VB (ed) Comprehensive guide to autism. Springer, New York, p 123

    Google Scholar 

  20. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  21. Solanas G, Cortina C, Sevillano M, Battle E (2011) Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat Cell Biol 13:1100–1107

    Article  CAS  PubMed  Google Scholar 

  22. Ulluwishewa D, Anderson RC, McNabb WC et al (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141:769–776

    Article  CAS  PubMed  Google Scholar 

  23. Catassi C, Fasano A (2008) Celiac disease. Curr Opin Gastroenterol 24:687–691

    Article  PubMed  Google Scholar 

  24. Vaarala O (2011) The gut as a regulator of early inflammation in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 18:241–247

    Article  CAS  PubMed  Google Scholar 

  25. Bjarnason I, MacPherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566–1581

    Article  CAS  PubMed  Google Scholar 

  26. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity and cancer. Physiol Rev 91:151–175

    Article  CAS  PubMed  Google Scholar 

  27. D’Eufemia P, Celli M, Finocchiaro R et al (1996) Abnormal intestinal permeability in children with autism. Acta Paediatr 85:1076–1079

    Article  PubMed  Google Scholar 

  28. De Magistris L, Familiari V, Pascotto A et al (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418–424

    Article  PubMed  Google Scholar 

  29. De Magistris L, Picardi A, Siniscalco D et al (2013) Antibodies against food antigens in patients with Autistic Spectrum Disorder. Biomed Res Int. doi:10.1155/2013/729349

    PubMed  PubMed Central  Google Scholar 

  30. Lerner A, Matthias T (2015) Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 14:479–489

    Article  CAS  PubMed  Google Scholar 

  31. Kramer P, Bressan P (2015) Human as superorganisms: how microbes, viruses, imprinted genes, and other selfish entities shape our behaviour. Perspect Psychol Sci 10:464–481

    Article  PubMed  Google Scholar 

  32. Rizzetto L, Weil T, Cavalieri D (2015) Systems level dissection of Candida recognition by Dectins: a matter of fungal morphology and site of infection. Pathogens 4:639–661

    Article  PubMed  PubMed Central  Google Scholar 

  33. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S (2015) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217

    Article  Google Scholar 

  34. Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Critchfield JW, van Hemert S et al (2011) The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011:161358

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ghaisas S, Maher J, Kanthasamy A (2015) Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 158:52–62, pii: S0163-7258(15)00225-9

    Article  PubMed  Google Scholar 

  37. Sandler RH, Finegold SM, Bolte ER et al (2000) Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 15:429–435

    Article  CAS  PubMed  Google Scholar 

  38. Serda Kantarcioglu A, Kiraz N, Aydin A (2015) Microbiota-Gut-Brain axis: yeast species isolated from stool samples of children with suspected or diagnosed autism spectrum disorders and in vitro susceptibility against nystatin and fluconazole. Mycopathologia. doi:10.1007/s11046-015-9949-3

    PubMed  Google Scholar 

  39. Semon BA (2014) Dietary cyclic dipeptides, apoptosis and psychiatric disorders: a hypothesis. Med Hypotheses 82:740–743

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Foster JA (2015) Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 11:715–723

    PubMed  PubMed Central  Google Scholar 

  41. Siniscalco D, Antonucci N (2013) Involvement of dietary bioactive proteins and peptides in autism spectrum disorders. Curr Protein Pept Sci 14(8):674–679

    CAS  PubMed  Google Scholar 

  42. Reichelt KL, Knivsberg AM (2009) The possibility and probability of a gut-to-brain connection in autism. Ann Clin Psychiatry 21(4):205–211

    CAS  PubMed  Google Scholar 

  43. Trivedi MS, Shah JS, Al-Mughairy S, Hodgson NW, Simms B, Trooskens GA, Van Criekinge W, Deth RC (2014) Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J Nutr Biochem 25(10):1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O, Rose S, Seidel L, Gaylor DW, James SJ (2012) Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord 42(3):367–377

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lionetti E, Leonardi S, Franzonello C, Mancardi M, Ruggieri M, Catassi C (2015) Gluten psychosis: confirmation of a new clinical entity. Nutrients 7(7):5532–5539

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shattock P, Whiteley P (2002) Biochemical aspects in autism spectrum disorders: updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin Ther Targets 6(2):175–183

    Article  CAS  PubMed  Google Scholar 

  47. Siniscalco D, Sapone A, Giordano C, Cirillo A, de Magistris L, Rossi F, Fasano A, Bradstreet JJ, Maione S, Antonucci N (2013) Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord 43(11):2686–2695

    Article  PubMed  Google Scholar 

  48. Siniscalco D, Bradstreet JJ, Cirillo A, Antonucci N (2014) The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation 11:78

    Article  PubMed  PubMed Central  Google Scholar 

  49. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48

    Article  PubMed  Google Scholar 

  50. de Theije CG, Koelink PJ, Korte-Bouws GA, Lopes da Silva S, Korte SM, Olivier B, Garssen J, Kraneveld AD (2014) Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav Immun 37:240–247

    Article  PubMed  Google Scholar 

  51. Baganz NL, Blakely RD (2013) A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 4(1):48–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F, Taylor AR, Kavaliers M, Ossenkopp KP (2007) Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176(1):149–169

    Article  CAS  PubMed  Google Scholar 

  53. Van Elst K, Bruining H, Birtoli B, Terreaux C, Buitelaar JK, Kas MJ (2014) Food for thought: dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders. Neurosci Biobehav Rev 45:369–738

    Article  PubMed  Google Scholar 

  54. Brigandi SA, Shao H, Qian SY, Shen Y, Wu BL, Kang JX (2015) Autistic children exhibit decreased levels of essential fatty acids in red blood cells. Int J Mol Sci 16(5):10061–10076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siniscalco D (2014) Adhesion G-protein coupled receptors in autism. Autism Open Access 4, e126. doi:10.4172/2165-7890.1000e126

    Article  Google Scholar 

  56. Marí-Bauset S, Llopis-González A, Zazpe I, Marí-Sanchis A, Suárez-Varela MM (2015) Nutritional impact of a gluten-free casein-free diet in children with autism spectrum disorder. J Autism Dev Disord 46:673–684 [Epub ahead of print]

    Article  Google Scholar 

  57. Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862

    CAS  PubMed  Google Scholar 

  58. Fang X (2015) Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int J Neurosci Oct 16:1–6

    Google Scholar 

  59. Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, Burnett M, Parisi JE, Klos KJ, Ahlskog JE (2009) Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 15(Suppl 3):S1–S5

    Article  PubMed  Google Scholar 

  60. Natale G, Pasquali L, Paparelli A, Fornai F (2011) Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol Motil 23:1056–1065

    Article  CAS  PubMed  Google Scholar 

  61. Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA, Kordower JH (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 29(8):999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Severance EG, Prandovszky E, Castiglione J, Yolken RH (2015) Gastroenterology issues in schizophrenia: why the gut matters. Curr Psychiatry Rep 17(5):27

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dash S, Clarke G, Berk M, Jacka FN (2015) The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry 28(1):1–6

    Article  PubMed  Google Scholar 

  64. Naseribafrouei A, Hestad K, Avershina E et al (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26(8):1155–1162

    Article  CAS  PubMed  Google Scholar 

  65. Telesford K, Ochoa-Repáraz J, Kasper LH (2014) Gut commensalism, cytokines, and central nervous system demyelination. J Interferon Cytokine Res 34(8):605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ochoa-Repáraz J, Kasper LH (2014) Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Lett 588(22):4214–4222

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mu Q, Zhang H, Luo XM (2015) SLE: another autoimmune disorder influenced by microbes and diet? Front Immunol 6:608

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sánchez B, Hevia A, González S, Margolles A (2015) Interaction of intestinal microorganisms with the human host in the framework of autoimmune diseases. Front Immunol 6:594

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura de Magistris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Magistris, L., Siniscalco, D., Bravaccio, C., Loguercio, C. (2016). Gut–Brain Axis: A New Revolution to Understand the Pathogenesis of Autism and Other Severe Neurological Diseases. In: Grossi, E., Pace, F. (eds) Human Nutrition from the Gastroenterologist’s Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-30361-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30361-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30359-8

  • Online ISBN: 978-3-319-30361-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics