Skip to main content

First Generation Bioethanol

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

At the beginning of 2016, first generation bioethanol still contributes to the majority of the 25 billion of gallons’ bioethanol produced worldwide, with the United States and Brazil producing approximately 85 % of the global production predominantly based on corn and sugarcane, respectively. However, concerns over the long-term sustainability of first generation bioethanol, such as the impacts on land use, water resource, the potential contamination of soils with the distillation residues, and the competition for food and feed production is frequently highlighted. Current fuel ethanol research and development strives to minimize these negative externalities. The fundamental role that process design plays during the development of cost-effective technologies is evaluated through the modification of the major pathways in first generation ethanol synthesis. In this context, the central role that better performing enzymes and microorganisms play in the intensity and integration of the process, such as the typical example of simultaneous saccharification and fermentation from starchy material in first generation facilities is acknowledged. Compensating ethanol production costs by the integrated valorization of energy and by-products for feed and green chemistry in a typical biorefinery concept are striking outputs of the first generation ethanol real scale experiment. Finally, rather than a mistake, first generation bioethanol should be considered as the first step that made it possible to gain the necessary experience for the successful implementation of the future greener generations biofuels from the field to the tank, starting with second generation lignocellulosic that is now coming on the market. In this context, integrated biorefineries are a promising way to diversify the usable feedstocks, leading to reduced facilities size and optimized supply-chains, to valorize more efficiently bagasse’s from sugarcane and corn stover or even to exploit the potential of microalgae to capture the carbon dioxide that is produced during the fermentation steps. Major stakeholders in bioenergy production are taking advantage of the large-scale successful development of first generation bioethanol, using the most promising processing schemes for next generation facilities, although the industry is still facing uncertainties with respect to its economic viability and longevity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abera S, Rakshit SK (2004) Effect of dry cassava chip storage on yield and functional properties of extracted starch. Starch 56(6):232–240

    Article  Google Scholar 

  • AFDC (2015) Renewable Fuels Association, Ethanol Industry Outlook 2008-2015 reports. http://www.afdc.energy.gov/data/10331. Accessed 8 Nov 2015

  • Agrosynergie (2011) Evaluation des measures de la politique agricole commune relatives au secteur du sucre. http://ec.europa.eu/agriculture/eval/…2011/exec_sum_fr.pdf. Accessed 19 Jan 2016

  • Aiyer PV (2005) Amylases and their applications. Afr J Biotechnol 4(13):1525–1529

    Google Scholar 

  • Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36(8):1085–1091

    Article  Google Scholar 

  • Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22

    Article  Google Scholar 

  • Alfenore S, Cameleyre X, Benbadis L et al (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63(5):537–542

    Article  Google Scholar 

  • Alvarez MM, Pérez-Carrillo E, Serna-Saldivar SO (2010) Effect of decortication and protease treatment on the kinetics of liquefaction, saccharification, and ethanol production from sorghum. J Chem Technol Biotechnol 85:1122–1130

    Article  Google Scholar 

  • ANFAVEA (2015) http://www.virapagina.com.br/anfavea2015/. Accessed 08 Nov 2015

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  Google Scholar 

  • Balat M, Balat H, Cahide OZ (2008) Progress in bioethanol processing. Prog Energ Combust 34:551–573

    Article  Google Scholar 

  • Baras J, Gacesa S, Pejin D (2002) Ethanol is a strategic raw material. Chem Ind 56:89–10

    Google Scholar 

  • Basso TO, Gomes FS, Lopes ML et al (2014) Homo- and heterofermentative lactobacilli differentially affect sugarcane-based fuel ethanol fermentation. Ant van Leeuwenhoek Int J Gen Mol Microbiol 105(1):169–177

    Article  Google Scholar 

  • Benoist A (2009) Eléments d’adaptation de la méthodologie d’analyse de cycle de vie aux carburants végétaux: cas de la première génération. PhD. Ecole Nationale des Mines de Paris, France

    Google Scholar 

  • Borges EP, Lopes ML, Amorim H (2012) Impact of sugar cane juice chemical composition on clarification and VHP sugar quality. Int Sugar J 114(1364):552–558

    Google Scholar 

  • Bothast RJ, Schlicher MA (2004) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    Article  Google Scholar 

  • Bvochora JM, Read JS, Zvauya R (2000) Application of very high gravity technology to the cofermentation of sweet stem sorghum juice and sorghum grain. Ind Crop Prod 11:11–17

    Article  Google Scholar 

  • Carter CA, Miller HI (2012) Corn for food, not fuel. http://www.nytimes.com/2012/07/31/opinion/corn-for-food-not-fuel.html?_r=0. Accessed 08 Nov 2015

  • Cerqueira Leite RC, Leal MRLVL, Cortez LAB et al (2009) Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy 34:655–661

    Article  Google Scholar 

  • Cheng JJ (2009) Biological process for ethanol production. Biomass Renew Energy Processes 209–269

    Google Scholar 

  • Conab (2013) http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_09_12_17_38_24_5_mandioca_pdf

  • Congress US, Renewable Fuels, Consumer Protection, and Energy Efficiency Act of 2007 (2007) Section 102, Subtitle A, H.R. 6 (EAS)

    Google Scholar 

  • Cot M (2006) Etudes physiologiques de l’adaptation et de la résistance de la levure Saccharomyces cerevisiae au cours de la production intensive d’éthanol. PhD. Institut National des Sciences Appliquées de Toulouse

    Google Scholar 

  • D’Amore T (1992) Improving yeast fermentation performance. J Inst Brew 98:375–382

    Article  Google Scholar 

  • Das Neves MA, Kimura T, Shimizu N, Shiiba K (2006) Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Braz Arch Biol Technol 49(3):481–490

    Google Scholar 

  • Della-Bianca BE, Basso TO, Stambuk BU et al (2013) What do we know about the yeast strains from the Brazillian fuel ethanol industry? Appl Microbiol Biotechnol 97(3):979–991

    Article  Google Scholar 

  • De Perthuis C, Trotignon R (2015) Le Climat à quel prix?. La Négociation climatique. Editions Odile Jacob, Paris

    Google Scholar 

  • de Vries SC, van de Ven GWJ, van Ittersum MK et al (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first generation conversion techniques. Biomass Energy 34:588–601

    Article  Google Scholar 

  • Dutta K, Daverey A, Jih-Gaw Lin J-G (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Article  Google Scholar 

  • Echegaray O, Carvalho J, Fernandes A et al (2000) Fed-batch culture of Saccharomyces cerevisiae in sugarcane blackstrap molasses: invertase activity of intact cells in ethanol fermentation. Biomass Bioenergy 19:39–50

    Article  Google Scholar 

  • EIA (2013) http://www.eia.gov/todayinenergy/detail.cfm?id=11551. Accessed 08 Nov

  • European Commission (2010) Energy 2020: a strategy for competitive, sustainable and secure energy. COM (2010) 639 final, Brussels

    Google Scholar 

  • European Parliament (2010) A new energy strategy for Europe 2011-2020. P7_TA (2010)0441, Brussels

    Google Scholar 

  • Eurostat (2011) Statistical data. http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/S

  • Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Biores Technol 96(9):985–1002

    Article  Google Scholar 

  • Gonçalves FA, dos Santos ES, de Macedo GR (2015) Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater: Fermentation in the presence of inhibitors. J Basic Microbiol 55(6):695–708

    Article  Google Scholar 

  • Gollier C, Tirole J (2015) Negotiating effective institutions against climate change. Econ Energy Environ Pol 4(2):5–28

    Google Scholar 

  • Graham-Rowe D (2011) Beyond food versus fuel. Nature 474:S6e8

    Google Scholar 

  • Gray JV, Petsko GA, Johnston GC et al (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: A review. Renew Sust Energy Rev 41:550–567

    Article  Google Scholar 

  • Haankuku C, Epplin FM, Kakani VG (2015) Industrial sugar beets to biofuel: field to fuel production system and cost estimates. Biomass Bioen 80:267–277

    Article  Google Scholar 

  • Harris PV, Wogulis M (2010) Polypeptides having amylolytic enhancing activity and polynucleotides encoding the same. Patent No. WO/2010/059413

    Google Scholar 

  • Harris PV, Xu F, Kreel NE et al (2014) New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 19:162–170

    Article  Google Scholar 

  • Herman PK (2002) Stationary phase in yeast. Curr Opin Microbiol 5:602–607

    Article  Google Scholar 

  • Hira A, Oliveira LG (2009) No substitute for oil? How Brazil developed its ethanol industry. Energ Policy 37:2450–2456

    Article  Google Scholar 

  • Horn SV, Vaaje-Kolstad G, Westereng B et al (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  Google Scholar 

  • IBGE (2008) Brazilian Institute of Geography and Statistics [Instituto Brasileiro de Geografia e Estatística—IBGE]. Evolução da Produtividade da Cana-de-Açúcar no Brasil. www.ibge.gov.brS

  • Ishikawa K, Nakatani H, Katsuya Y et al (2007) Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in β-amylase. Biochem 46:792–798

    Article  Google Scholar 

  • Johnston DB, McAloon AJ (2014) Protease increases fermentation rate and ethanol yield in dry-grind ethanol production. Biores Technol 154:18–25

    Article  Google Scholar 

  • Kang Y-N, Tanabe A, Adachi M et al (2005) Structural analysis of threonine 342 mutants of soybean b-amylase: role of a conformational change of the inner loop in the catalytic mechanism. Biochem 44:5106–5116

    Article  Google Scholar 

  • Kim I-S, Moon H-Y, Yun H-S et al (2006) Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. J Microbiol (Seoul, Korea) 44(5):492–501

    Google Scholar 

  • Koppram R, Olsson L (2014) Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loading. Biotechnol Biofuel 7. doi:10.1186/1754-6834-7-54

    Google Scholar 

  • Kramer GFH, Gunning AP, Morris VJ et al (1993) Scanning tunneling microscopy of Aspergillus niger glucoamylase. J Chem Soc, Faraday Trans 89:2595–2602

    Article  Google Scholar 

  • Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biol Conserv 141(10):2450–2460

    Article  Google Scholar 

  • Larkin S, Ramage J, Scurlock J (2004). Bioenergy. In: Boyle G (ed) Renewable energy. Oxford University Press, p 135

    Google Scholar 

  • Lei H, Zheng L, Wang C, Zhao H et al (2013) Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. Int J Food Microbiol 161:76–83

    Article  Google Scholar 

  • Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol process and the importance of by-products. Biores Technol 165:3–8

    Article  Google Scholar 

  • Linoj KNV, Dhavala P, Goswami A et al (2006) Liquid biofuels in South Asia: resources and technologies. Asian Biotechnol Develop Rev 8:31–49

    Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen J-CN et al (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Comms 6:5961

    Article  Google Scholar 

  • Lombard V, Ramulu HG, Drula E et al (2014) The carbohydrate-active enzymes databases (CAZy) in 2013. Nucleic Acids Res 42:490–495

    Article  Google Scholar 

  • Luckett CR, Wang Y-J (2012) Effects of β-amylolysis on the resistant starch formation of debranched corn starches. J Agric Food Chem 60:4751–4757

    Article  Google Scholar 

  • Lundgard R, Svensson B (1987) The four major forms of barley a-amylase. Purification, characterization and structural relationship. Carlsberg Res Commun 52:313–326

    Article  Google Scholar 

  • Macrelli S, Galbe M, Wallberg O (2014) Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotech Biofuels 7:26

    Article  Google Scholar 

  • Maity JP, Bundschuh J, Chen C-Y et al (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives—a mini review. Energy 78:104–113

    Article  Google Scholar 

  • Maity SK (2015a) Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew Sustain Energy Rev 43:1427–1445

    Article  Google Scholar 

  • Maity SK (2015b) Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renew Sustain Energy Rev 43:1446–1466

    Article  Google Scholar 

  • Maranduba HL, Robra S, Nascimento IA et al (2015) Reducing the life cycle GHG emissions of microalgal biodiesel through integration with ethanol production system. Biores Technol 194:21–27

    Article  Google Scholar 

  • McAloon A, Taylor F, Yee W et al (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. http://www.nrel.gov/docs/fy01osti/28893.pdf. Accessed 08 Nov 2015

  • Mikami B, Iwamoto H, Malle D et al (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359:690–707

    Article  Google Scholar 

  • Morano KA, Liu PC, Thiele DJ (1998) Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Curr Opin Microbiol 1(2):197–203

    Article  Google Scholar 

  • Morris VJ, Gunning AP, Faulds CB et al (2005) AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase. Starch 57:1–7

    Article  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93:1–10

    Article  Google Scholar 

  • Nielsen PK, Bønsager BC, Fukuda K et al (2004) Barley a-amylase/subtilisin inhibitor: structure, biophysics and protein engineering. Biochim Biophys Acta 1696:157–164

    Article  Google Scholar 

  • Nikolov ZL, Meagher MM, Reilly PJ (1989) Kinetics, equilibria, and modeling of the formation of oligosaccharides from d-glucose by Aspergillus niger glucoamylase. Biotechnol Bioeng 34:694–704

    Article  Google Scholar 

  • NREL (2014) Renewable Energy Data Book, US Dept of Energy. www.nrel.gov/docs/fy16osti/64720.pdf. Accessed 19 Jan 2016

  • OECD/IEA (2008) From 1st to 2nd generations of biofuel technologies, overview of current industry and RD&D activities

    Google Scholar 

  • Ostanin K, Harms EH, Stevis PE (1992) Overexpression, site directed mutagenesis and mechanism of Escherichia coli acid phosphatase. J Biol Chem 267:22830–22836

    Google Scholar 

  • Pagliardini J (2010) Optimisation du rendement de production de bioéthanol chez Saccharomyces cerevisiae par minimisation de la synthèse du glycérol: approche intégrée de génie métabolique et microbiologique. PhD. Toulouse University, France

    Google Scholar 

  • Pereira LFB (2014) Bioethanol—robust production strains for process identification. PhD. Univesidade do Minho, Portugal

    Google Scholar 

  • Pipper PW (1995) The heat-shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Yeast Res 134(2–3):121–127

    Google Scholar 

  • Pizarro FJ, Jewett MC, Nielsen J et al (2008) Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74(20):6358–6368

    Article  Google Scholar 

  • Postmus J (2011) The physiological response of Saccharomyces cerevisiae to temperature stress. PhD. Amsterdam University, The Netherlands

    Google Scholar 

  • Puligundla P, Smogrovicova D, Obulam VSR, Ko S (2011) Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 38:1133–1144

    Article  Google Scholar 

  • Quintero JA, Montoya MI, Sánchez OJ et al (2008) Fuel ethanol production from sugarcane and corn: comparative analysis for a Colombian case. Energy 33:385–399

    Article  Google Scholar 

  • Reiss J (2012) Intensification de la brique «fermentation alcoolique» de substrats betteraviers pour la production d’éthanol. PhD. Toulouse University, France

    Google Scholar 

  • REN21 (2012) Renewables 2012? Global Status Report, REN21 Secretariat, Paris

    Google Scholar 

  • Rockey WM, Laederach A, Reilly PJ (2000) Automated docking of α-(1→4)- and α-(1→6)-linked glucosyl trisaccharides and maltopentaose into the soybean β-amylase active site. Proteins Struct Funct Genet 40:299–309

    Article  Google Scholar 

  • Rojanaridpiched C, Kosintarasaenee S, Sriroth K et al (2003) Development of Ethanol Production Technology from Cassava Chip at a Pilot Plant Scale. National Research Council of Thailand

    Google Scholar 

  • Rosillo-Calle F, Cortez LAB (1998) Towards ProAlcool II—a review of the Brazilian bioethanol programme. Biomass Bioenergy 14:115–124

    Article  Google Scholar 

  • Ruan Q, Chen WB, Huang SH (2001) The mathematics model and matrix method of complex cocurrent multi-effect evaporation. Eng Sci 3:36–41

    Google Scholar 

  • Salazar-Ordóñez M, Pérez-Hernández PP, Martín-Lozano JM (2013) Sugar beet for bioethanol production: an approach based on environmental agricultural outputs. Energy Policy 55:662–668

    Article  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295

    Article  Google Scholar 

  • Sancho AI, Faulds CB, Svensson B et al (2003) Cross-inhibitory activity of cereal protein inhibitors against a-amylases and xylanases. Biochim Biophys Acta 1650:136–144

    Article  Google Scholar 

  • Seabra JEA, Macedo IC, Chum HL et al (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod Biorefin 5:519–532

    Article  Google Scholar 

  • Siqueira PF, Karp SG, Carvalho JC et al (2008) Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Biores Technol 99:8156–8163

    Article  Google Scholar 

  • Smeets E, Tabeau A, van Berkum S et al (2014) The impact of the rebound effect of the use of first generation biofuels in the EU on greenhouse gas emissions: a critical review. Renew Sustain Energy Rev 38:393–403

    Article  Google Scholar 

  • Snoek T, Picca Nicolino M, Van den Bremt S et al (2015) Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotech Biofuels 8(1):32

    Article  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Costa B et al (2005) Brazilian biofuel program: an overview. J Sci Ind Res 64:897–904

    Google Scholar 

  • Soccol CR, Vandenberghe LPD, Medeiros ABP et al (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Biores Technol 101(13):4820–4825

    Google Scholar 

  • Souza SP, Gopal AR, Seabra JEA (2015) Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery. Energy 81:373–381

    Article  Google Scholar 

  • Sriroth K, Wanlapatit S, Piyachomkwan K (2012) Cassava Bioethanol, Bioethanol, Prof. Marco Aurelio Pinheiro Lima (Ed.), ISBN: 978-953-51-0008-9, InTech. http://www.intechopen.com/books/bioethanol/-cassava-bioethanol

    Google Scholar 

  • Steensels J, Snoek T, Meersman E et al (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38(5):947–995

    Article  Google Scholar 

  • Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol 136(8):1469–1474

    Article  Google Scholar 

  • Thomas KC, Ingledew WM (1992) Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J Ind Microbiol 10(1):61–68

    Article  Google Scholar 

  • Trivedi N, Gupta V, Reddy C et al (2015) Marine macroalgal biomass as a renewable source of bioethanol. In: Kim S-K, Lee C-G (eds) Marine Bioenergy. CRC Press, pp 197–216

    Google Scholar 

  • Udop (2015) União dos Produtores de Bioenergia http://www.udop.com.br/index.php?item=safras. Accessed 08 Nov 2015

  • Unica (2015) União da Indústria da Cana de Açúcar. http://www.unicadata.com.br/historico-de-producao-e-moagem.php. Accessed 08 Nov 2015

  • UNCTAD (2015) Commodity profile—Cassava. http://www.unctad.info/en/Infocomm/AACP-Products/COMMODIRY-PROFILE---Cassava/. Accessed 08 Nov 2015

  • Vidal BC Jr, Rausch KD, Tumbleson M et al (2009) Protease treatment to improve ethanol fermentation in modified dry gring corn processes. Cereal Chem 86:323–328

    Article  Google Scholar 

  • Walker-Caprioglio HM, Casey WM, Parks LW (1990) Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Appl Environ Microbiol 56:2853–2857

    Google Scholar 

  • Wang P, Johnston DB, Rausch KD et al (2009) Effects of protease and urea on a granular starch hydrolyzing process for corn ethanol production. Cereal Chem 86:319–322

    Article  Google Scholar 

  • Wang L, Raul Quiceno R, Price C et al (2014) Economic and GHG emissions analyses for sugarcane ethanol in Brazil: looking forward. Renew Sustain Energy Rev 40:571–582

    Article  Google Scholar 

  • Wheals AE, Basso LC, Alves DMG et al (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487

    Article  Google Scholar 

  • Woods J (2000) Integrating sweet sorghum and sugarcane for bioenergy: modelling the potential for electricity and ethanol production in SE Zimbabwe. PhD thesis. King’s College, London

    Google Scholar 

  • Woods J (2001) The potential for energy production using sweet sorghum in southern Africa. Energy Sustain Dev 1:31–38

    Article  Google Scholar 

  • Yoosin S, Sorapipatana C (2007) A study of ethanol production cost for gasoline substitution in Thailand and its competitiveness: thammasat. Int J Sci Technol 12:69–80

    Google Scholar 

  • Zarrilli S (2006) The emerging biofuels market: regulatory, trade and development implications. UNCTAD Intergovernmental Expert Meeting on BioFuels, Geneva, November 3 2006

    Google Scholar 

  • Zhou GT, Jiang ZM, Dong XL et al (2011) Recycling and refining of alcohol derived from waste beer separated from spent yeast. J Am Soc Brew Chem 69(3):158–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Faulds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bertrand, E., Vandenberghe, L.P.S., Soccol, C.R., Sigoillot, JC., Faulds, C. (2016). First Generation Bioethanol. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics