Skip to main content

Chains, Antichains, and Fences

  • Chapter
  • First Online:
Ordered Sets
  • 1645 Accesses

Abstract

Chains and antichains are arguably the most common kinds of ordered sets in mathematics. The elementary number systems \(\mathbb{N}\), \(\mathbb{Z}\), \(\mathbb{Q}\), and \(\mathbb{R}\) (but not \(\mathbb{C}\)) are chains. Chains are also at the heart of set theory. The Axiom of Choice is equivalent to Zorn’s Lemma, which we will adopt as an axiom, and the Well-Ordering Theorem. The latter two results are both about chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes, sets that intersect every maximal antichain are called fibers. The overall upper bound on the size of such a fiber is | P | , as can be seen considering chains. Upper and lower bounds on the fiber size for individual ordered sets in given classes of ordered sets can be interesting.

References

  1. Berman, J., & Köhler, P. (1976). Cardinalities of finite distributive lattices. Mitteilungen aus dem Mathematics Seminar Giessen, 121, 103–124.

    MathSciNet  MATH  Google Scholar 

  2. Bogart, K. P., Freese, R., Kung, J. P. S. (Eds.). (1990). The Dilworth theorems: Selected papers of Robert P. Dilworth. Boston: Birkhäuser.

    Google Scholar 

  3. Bollobás, B. (1979). Graph theory. Graduate texts in mathematics (Vol. 63). New York: Springer.

    Google Scholar 

  4. Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets. Annals of Mathematics, 51, 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dilworth, R. P. (1990). Chain partitions in ordered sets. In K. P. Bogart, R. Freese, & J. P. S. Kung (Eds.), The Dilworth theorems: Selected papers of Robert P. Dilworth (pp. 1–6). Boston: Birkhäuser.

    Google Scholar 

  6. Duffus, D., Kierstead, H. A., & Trotter, W. T. (1991). Fibres and ordered set coloring. Journal of Combinatorial Theory, Series A, 58, 158–164.

    Article  MathSciNet  MATH  Google Scholar 

  7. Duffus, D., Łuczak, T., Rödl, V., & Ruciński, A. (1998). Endomorphisms of partially ordered sets. Combinatorics, Probability and Computing, 7, 33–46.

    Article  MathSciNet  MATH  Google Scholar 

  8. Duffus, D., Rödl, V., Sands, B., & Woodrow, R. (1992). Enumeration of order-preserving maps. Order, 9, 15–29.

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffus, D., Sands, B., Sauer, N., & Woodrow, R. E. (1991). Two-coloring all two-element maximal antichains. Journal of Combinatorial Theory, Series A, 57, 109–116.

    Article  MathSciNet  MATH  Google Scholar 

  10. Farley, J. D. (1995). The number of order-preserving maps between fences and crowns. Order, 12, 5–44.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fouché, W. (1996). Chain partitions of ordered sets. Order, 13, 255–266.

    MathSciNet  MATH  Google Scholar 

  12. Grant, K., Nowakowski, R., & Rival, I. (1995). The endomorphism spectrum of an ordered set. Order, 12, 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  13. Halmos, P. R. (1974). Naive set theory. Undergraduate texts in mathematics. New York: Springer.

    Book  Google Scholar 

  14. Kisielewicz, A. (1988). A solution of Dedekind’s problem on the number of isotone Boolean functions. Journal für die Reine und Angewandte Mathematik, 386, 139–144.

    MathSciNet  MATH  Google Scholar 

  15. Kleitman, D. J., & Markowsky, G. (1975). On Dedekind’s problem: The number of isotone Boolean functions II. Transactions of the American Mathematical Society, 213, 373–390.

    MathSciNet  MATH  Google Scholar 

  16. Korshunov, A. (1977). On the number of monotone Boolean functions (in Russian). Problemy Kibernetiki, 38, 5–108.

    MathSciNet  MATH  Google Scholar 

  17. Lonc, Z., & Rival, I. (1987). Chains, antichains and fibres. Journal of Combinatorial Theory, Series A, 44, 207–228.

    Article  MathSciNet  MATH  Google Scholar 

  18. Maltby, R. (1992). A smallest-fibre-size to poset-size ratio approaching \(\frac{8} {15}\). Journal of Combinatorial Theory (A), 61, 328–330.

    Article  MathSciNet  MATH  Google Scholar 

  19. Nešetřil, J., & Rödl, V. (1977). Partitions of finite relational and set systems. Journal of Combinatorial Theory (A), 17, 289–312.

    MathSciNet  MATH  Google Scholar 

  20. Nešetřil, J., & Rödl, V. (1984). Combinatorial partitions of finite posets and lattices. Algebra Universalis, 19, 106–119.

    Article  MathSciNet  MATH  Google Scholar 

  21. Peles, M. A. (1963). On Dilworth’s theorem in the infinite case. Israel Journal of Mathematics, 1, 108–109.

    Article  MathSciNet  Google Scholar 

  22. Pretorius, L., & Swanepoel, C. (2000). Partitions of countable posets, papers in honour of Ernest J. Cockayne. Journal of Combinatorial Mathematics and Combinatorial Computing, 33, 289–297.

    MathSciNet  MATH  Google Scholar 

  23. Provan, J. S., & Ball, M. O. (1983). The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing, 12, 777–788.

    Article  MathSciNet  MATH  Google Scholar 

  24. Quackenbush, R. (1986). Unsolved problems: Dedekind’s problem. Order, 2, 415–417.

    Article  MathSciNet  Google Scholar 

  25. Ramsey, F. P. (1930). On a problem of formal logic. Proceedings of the London Mathematical Society, 30(2), 264–286.

    Article  MathSciNet  MATH  Google Scholar 

  26. Rival, I., & Rutkowski, A. (1991). Does almost every isotone self-map have a fixed point? In Extremal problems for finite sets. Bolyai mathematical society studies (Vol. 3, pp. 413–422). Hungary: Viségrad.

    Google Scholar 

  27. Schröder, B. (2003). On ordered sets with isomorphic marked maximal cards. Order, 20, 299–327.

    Article  MathSciNet  MATH  Google Scholar 

  28. Schröder, B. (2005). The automorphism conjecture for small sets and series parallel sets. Order, 22, 371–387.

    Article  MathSciNet  MATH  Google Scholar 

  29. Schröder, B. (2010). Fundamentals of mathematics – An introduction to proofs, logic, sets and numbers. Hoboken: Wiley.

    MATH  Google Scholar 

  30. Trotter, W. T. (1992). Combinatorics and partially ordered sets: Dimension theory. Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  31. Tverberg, H. (1967). On Dilworth’s theorem for partially ordered sets. Journal of Combinatorial Theory, 3, 305–306.

    Article  MathSciNet  MATH  Google Scholar 

  32. Wagon, S. (1993). The Banach-Tarski paradox. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  33. West, D. (1985). Parameters of partial orders and graphs: Packing, covering and representation. In I. Rival (Ed.), Graphs and orders (pp. 267–350). Dordrecht: Dordrecht-Reidel.

    Chapter  Google Scholar 

  34. Wiedemann, D. (1991). A computation of the eighth Dedekind number. Order, 8, 5–6.

    Article  MathSciNet  MATH  Google Scholar 

  35. Willard, S. (1970). General topology. Reading: Addison-Wesley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Schröder, B. (2016). Chains, Antichains, and Fences. In: Ordered Sets. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-29788-0_2

Download citation

Publish with us

Policies and ethics