Skip to main content

Role of Feed-Forward Inhibition in Neocortical Information Processing: Implications for Neurological Disorders

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

A major well-documented feature of cortical functional organization is the presence of prominent broadly tuned feed-forward inhibition in the input layer 4, in which local layer 4 inhibitory cells receive direct thalamocortical input and in turn suppress responses of neighboring layer 4 excitatory cells to their thalamocortical drive, thereby sharpening their receptive field properties. Here we review the evidence that the presence of broadly tuned feed-forward inhibition in layer 4 turns local layer 4 domains into functional analogs of Radial Basis Function networks, enabling layer 4 to contribute importantly to sensory information processing as a pluripotent function linearizer: i.e., it performs such a transform of afferent inputs to a cortical column that makes possible for neurons in the upper layers of the column to learn and perform their complex functions using primarily linear operations.

Feed-forward inhibition is subserved by fast-acting basket cells and slow-acting neurogliaform cells, which rely on GABAA and GABAB receptor-mediated inhibition, respectively. Their respective contributions can be observed by measuring tactile stimulus detection threshold using step vs. ramp vibrotactile stimuli. The static (step) threshold reflects basket-mediated inhibition, whereas the difference between the static and dynamic (ramp) thresholds reflects neurogliaform-mediated inhibition. Our feed-forward inhibition metric, which is based on the static and dynamic detection thresholds, can provide significant insight about the neurological health of the cortical circuitry, given that neurogliaform cells are engaged in on-demand energy homeostasis of cortical networks through their local release of insulin. For example, we have found this metric to be below normal in adolescents with autism spectrum disorder, but highly elevated in type 2 diabetes. Maladaptive feed-forward inhibition can have significant downstream implications for cortical information processing, and our metric can potentially be an effective means for evaluating a number of cortical abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso JM, Swadlow HA (2005) Thalamocortical specificity and the synthesis of sensory cortical receptive fields. J Neurophysiol 94:26–32

    Google Scholar 

  • Alonso JM, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21:4002–4015

    CAS  Google Scholar 

  • Anderson JC, Douglas RJ, Martin KAC et al (1994) Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex. J Comp Neurol 341:16–24

    CAS  Google Scholar 

  • Bohringer A, Schwabe L, Richter S et al (2008) Intranasal insulin attenuates the hypothalamic–pituitary–adrenal axis response to psychosocial stress. Psychoneuroendocrinology 33(10):1394–1400

    CAS  Google Scholar 

  • Bonds AB (1989) Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis Neurosci 2:41–55

    CAS  Google Scholar 

  • Brondino N, Fusar-Poli L, Panisi C et al (2016) Pharmacological modulation of GABA function in autism spectrum disorders: a systemic review of human studies. J Autism Dev Disord 46(3):825–839

    Google Scholar 

  • Bruno RM, Simons DJ (2002) Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J Neurosci 22:10966–10975

    CAS  Google Scholar 

  • Chapman CD, Frey WH II, Craft S et al (2013) Intranasal treatment of central nervous system dysfunction in humans. Pharm Res 30(10):2475–2484

    CAS  Google Scholar 

  • Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20:1177–1189

    CAS  Google Scholar 

  • Cruikshank SJ, Lewis TJ, Connors BW (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10:462–468

    CAS  Google Scholar 

  • Csajbok EA, Tamas G (2016) Cerebral cortex: a target and source of insulin? Diabetologia 59:1609–1615

    CAS  Google Scholar 

  • DeAngelis GC, Robson JG, Ohzawa I et al (1992) The organization of suppression in receptive fields of neurons in the cat’s visual cortex. J Neurophysiol 68:144–163

    CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J Neurophysiol 69:1091–1117

    CAS  Google Scholar 

  • de la Monte SM (2013) Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 10(12):1699–1709

    Google Scholar 

  • Delaney E (2013) The relationship between traumatic stress, PTSD and cortisol. Naval Center for Combat & Operational Stress Control, San Diego

    Google Scholar 

  • Dreher B (1972) Hypercomplex cells in the cat’s striate cortex. Invest Ophtalmol 11:355–356

    CAS  Google Scholar 

  • Egede LE, Dismuke CE (2012) Serious psychological distress and diabetes: a review of the literature. Curr Psychiatry Rep 14(1):15–22

    Google Scholar 

  • Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105

    CAS  Google Scholar 

  • Favorov OV, Kursun O (2011) Neocortical layer 4 as a pluripotent function linearizer. J Neurophysiol 105:1342–1360

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  Google Scholar 

  • Ferster D (1986) Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J Neurosci 6:1284–1301

    CAS  Google Scholar 

  • Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380:249–252

    CAS  Google Scholar 

  • Francisco E, Favorov O, Tommerdahl M (2013) The role of cortical modularity in tactile information processing: an approach to measuring information processing deficits in autism. In: Fitzgerald M (ed) Recent advances in autism spectrum disorders, vol II. InTech. Rijeka, Croatia. doi:10.5772/54801

  • Freedman DJ, Miller EK (2007) Neural mechanisms of visual categorization: insights from neurophysiology. Neurosci Biobehav Rev 32:311–329

    Google Scholar 

  • Furtado M, Katzman MA (2015) Neuroinflammatory pathways in anxiety, posttraumatic stress, and obsessive compulsive disorders. Psychiatry Res 229(1):37–48

    CAS  Google Scholar 

  • Gardner JL, Anzai A, Ohzawa I et al (1999) Linear and nonlinear contributions to orientation tuning of simple cells in the cat’s striate cortex. Vis Neurosci 16:1115–1121

    CAS  Google Scholar 

  • Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    CAS  Google Scholar 

  • Hirsch JA, Martinez LM, Pillai C et al (2003) Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat Neurosci 6:1300–1308

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interactions and functional architecture in the cat’s visual cortex. J Physiol Lond 160:106–154

    CAS  Google Scholar 

  • Hull C, Isaacson JS, Scanziani M (2009) Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs. J Neurosci 29:9127–9136

    CAS  Google Scholar 

  • Iwamura Y (1998) Hierarchical somatosensory processing. Curr Opin Neurobiol 8:522–528

    CAS  Google Scholar 

  • Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58:1187–1211

    CAS  Google Scholar 

  • Kourtzi Z, DiCarlo JJ (2006) Learning and neural plasticity in visual object recognition. Curr Opin Neurobiol 16:152–158

    CAS  Google Scholar 

  • Kůrková V (2003) Universal approximators. In: Arbib MA (ed) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge, pp 1180–1183

    Google Scholar 

  • Kyriazi H, Carvell GE, Brumberg JC et al (1996) Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. J Neurophysiol 75:547–560

    CAS  Google Scholar 

  • McNay EC, Recknagel AK (2011) Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 96:432–442

    CAS  Google Scholar 

  • Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11:488–497

    CAS  Google Scholar 

  • Molnár G, Faragó N, Kocsis Á et al (2014) GABAergic neurogliaform cells represent local sources of insulin in the cerebral cortex. J Neurosci 34(4):1133–1137

    Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial and temporal contrast sensitivity on neurons in areas 17 and 18 of the cat’s visual cortex. J Physiol 283:101–120

    CAS  Google Scholar 

  • Olah S, Fule M, Komlosi G et al (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1282

    CAS  Google Scholar 

  • Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3:246–257

    CAS  Google Scholar 

  • Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feed-forward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710

    CAS  Google Scholar 

  • Purkayastha P, Malapati A, Yogeeswari P et al (2015) A review of GABA/glutamate pathway for therapeutic intervention of ASD and ADHD. Curr Med Chem 22(15):1850–1859

    CAS  Google Scholar 

  • Puts N, Wodka E, Tommerdahl M et al (2014) Impaired tactile processing in children with austism spectrum disorder. J Neurophysiol 111(9):1803–1811

    Google Scholar 

  • Puts N, Wodka E, Harris A et al (2016) Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. doi:10.1002/aur.1691

  • Rauschecker JP (1998) Cortical processing of complex sounds. Curr Opin Neurobiol 8:516–521

    CAS  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    CAS  Google Scholar 

  • Rose D, Blakemore C (1974) An analysis of orientation selectivity in the cat’s visual cortex. Exp Brain Res 20:1–17

    CAS  Google Scholar 

  • Sáez I, Friedlander MJ (2009) Plasticity between neuronal pairs in layer 4 of visual cortex varies with synapse state. J Neurosci 29:15286–15298

    Google Scholar 

  • Schölkopf B, Smola AJ (2002) Learning with Kernels. MIT Press, Cambridge

    Google Scholar 

  • Sclar G, Freeman RD (1982) Orientation selectivity in the cat’s striate cortex is invariant with stimulus contrast. Exp Brain Res 46:457–461

    CAS  Google Scholar 

  • Skottun BC, Valois RL, Grosof DH et al (1991) Classifying simple and complex cells on the basis of response modulation. Vis Res 31:1079–1086

    CAS  Google Scholar 

  • Sun QQ, Huguenard JR, Prince DA (2006) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230

    CAS  Google Scholar 

  • Sur M, Rubenstein JLR (2005) Patterning and plasticity of the cerebral cortex. Science 310:805–810

    CAS  Google Scholar 

  • Swadlow HA (2002) Thalamocortical control of feed-forward inhibition in awake somatosensory “barrel” cortex. Philos Trans R Soc Lond Ser B Biol Sci 357:1717–1727

    Google Scholar 

  • Swadlow HA (2003) Fast-spiking interneurons and feedforward inhibition in awake sensory neocortex. Cereb Cortex 13:25–32

    Google Scholar 

  • Tamas G, Lorincz A, Simon A et al (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905

    CAS  Google Scholar 

  • Tarczy-Hornoch K, Martin KAC, Stratford KJ et al (1999) Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. Cereb Cortex 9:833–843

    CAS  Google Scholar 

  • Tavassoli T, Bellesheim K, Tommerdahl M et al (2015) Altered tactile processing in children with autism spectrum disorder. Autism Res 9:616–620

    Google Scholar 

  • Tolhurst DJ, Thompson ID (1981) On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat. Proc R Soc Lond B 213:183–199

    CAS  Google Scholar 

  • Vidyasagar TR, Siguenza JA (1985) Relationship between orientation tuning and spatial frequency of cat area 17. Exp Brain Res 57:628–631

    CAS  Google Scholar 

  • Zhang Z, Francisco E, Holden J et al (2011) Somatosensory information processing in the aging population. Front Aging Neurosci 3:18. doi:10.3389/fnagi.2011.00018

    Article  Google Scholar 

Download references

Acknowledgements

Partial support for this work was provided by the Office of Naval Research, Applied Research Associates, and by TUBITAK-1001 Research Project (Project ID: 114E178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Favorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favorov, O.V., Kursun, O., Tommerdahl, M. (2017). Role of Feed-Forward Inhibition in Neocortical Information Processing: Implications for Neurological Disorders. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_17

Download citation

Publish with us

Policies and ethics