Skip to main content

Tangible Networks: A Toolkit for Exploring Network Science

  • Conference paper
  • First Online:
Proceedings of ECCS 2014

Abstract

We present Tangible Networks (TN), a novel electronic toolkit for communicating and explaining concepts and models in complexity sciences to a variety of audiences. TN is an interactive hands-on platform for visualising the real-time behaviour of mathematical and computational models on complex networks. Compared to models running on a computer, the physical interface encourages playful exploration. We discuss the design of the toolkit, the implementation of different mathematical models and how TN has been received to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available online at https://ccl.northwestern.edu/netlogo/.

  2. 2.

    See for example https://forum.arduino.cc.

References

  1. Arduino Project: Arduino. www.arduino.cc

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. BCCS: BCCS Outreach (2014). http://www.bristol.ac.uk/bccs/public-engagement/

  4. Bdeir, A.: Electronics as material: littleBits. In: Proceedings of the ACM TEI ’09, pp. 397–400 (2009). http://dl.acm.org/citation.cfm?id=1517743

  5. Bubela, T., Nisbet, M.C., Borchelt, R., Brunger, F., Critchley, C., Einsiedel, E., Geller, G., Gupta, A., Hampel, J., Hyde-Lay, R., et al.: Science communication reconsidered. Nat. Biotech. 27(6), 514–518 (2009)

    Article  Google Scholar 

  6. Buck, J.: Synchronous rhythmic flashing of fireflies. ii. Quarterly review of biology, pp. 265–289 (1988)

    Google Scholar 

  7. Campos, P.R.A., de Oliveira, V.M., Moreira, F.G.B.: Small-world effects in the majority-vote model. Phys. Rev. E 67, 026104 (Feb 2003). http://link.aps.org/doi/10.1103/PhysRevE.67.026104

  8. Dorfler, F., Bullo, F.: Synchronization and transient stability in power networks and nonuniform kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Analysis of a power grid using a kuramoto-like model. Eur. Phys. J. B-Condens. Matter Complex Syst. 61(4), 485–491 (2008)

    Article  Google Scholar 

  10. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  ADS  Google Scholar 

  11. Girouard, A., Solovey, E., Hirshfield, L.: Smart Blocks: a tangible mathematical manipulative. In: Proceedings of ACM TEI ’07, pp. 183–186 (2007). http://dl.acm.org/citation.cfm?id=1227007

  12. Glowacki, D.R., O’Connor, M., Calabro, G., Price, J., Tew, P., Mitchell, T., Hyde, J., Tew, D., Coughtrie, D.J., McIntosh-Smith, S.: a GPU-accelerated immersive audiovisual framework for interaction with molecular dynamics using consumer depth sensors. Faraday Discussions (2014). http://pubs.rsc.org/en/Content/ArticleLanding/2014/FD/c4fd00008k

  13. Grasha, A.: Teaching with Style: A Practical Guide to Enhancing Learning by Understanding Teaching and Learning Styles. Alliance Publishers, Curriculum for change series (1996)

    Google Scholar 

  14. Horn, M.S., Jacob, R.K.J.: Designing tangible programming languages for classroom use. In: Proceedings of ACM TEI ’07, pp. 159–162 (2007). http://dl.acm.org/citation.cfm?id=1227003

  15. Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of ACM CHI ’97, pp. 234–241 (1997). http://dl.acm.org/citation.cfm?id=258715

  16. Kolb, D.A., et al.: Experiential learning: Experience as the Source of Learning and Development, vol. 1. Prentice-Hall Englewood Cliffs, NJ (1984)

    Google Scholar 

  17. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Courier Dover Publications (2003)

    Google Scholar 

  18. Marshall, P.: Do tangible interfaces enhance learning? In: Proceedings of ACM TEI ’07, pp. 163–170 (2007). http://dl.acm.org/citation.cfm?id=1227004

  19. Mitchell, T., Hyde, J., Tew, P., Glowacki, D.: danceroom Spectroscopy: at the frontiers of physics, performance, interactive art and technology. Leonardo, p. 140826115909005 (Aug 2014). http://www.mitpressjournals.org/doi/abs/10.1162/LEON_a_00924

  20. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  21. Newman, M.: Networks: an introduction. Oxford University Press (2010)

    Google Scholar 

  22. Riechmann, S.W., Grasha, A.F.: A rational approach to developing and assessing the construct validity of a student learning style scales instrument. J. Psychol. 87(2), 213–223 (1974)

    Article  Google Scholar 

  23. Rubenstein, M., Cornejo, a., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (Aug 2014). http://www.sciencemag.org/cgi/doi/10.1126/science.1254295

    Google Scholar 

  24. Schweikardt, E., Gross, M.: roBlocks: a robotic construction kit for mathematics and science education. In: Proceedings of ACM ICMI ’06 (2006). http://dl.acm.org/citation.cfm?id=1181010

  25. Tangible Networks. www.tangiblenetworks.net

  26. Wolfendale committee and others: Wolfendale committee final report (1995)

    Google Scholar 

  27. Wynne, B.: Public engagement as a means of restoring public trust in science—hitting the notes, but missing the music? Public Health Genomics 9(3), 211–220 (2006)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the Bristol Centre for Complexity Sciences, through EPSRC grant EP/I013717/1. EK wishes to acknowledge funding from the James Dyson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Knoop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Knoop, E., Barter, E., de Villafranca, A.E.M., Matyjaszkiewicz, A., McWilliams, C., Roberts, L. (2016). Tangible Networks: A Toolkit for Exploring Network Science. In: Battiston, S., De Pellegrini, F., Caldarelli, G., Merelli, E. (eds) Proceedings of ECCS 2014. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-29228-1_4

Download citation

Publish with us

Policies and ethics