Skip to main content

Stem Cells in Diseases of Aging

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1417 Accesses

Abstract

Aging-related diseases mainly include cardiovascular diseases, neurodegenerative diseases, type 2 diabetes mellitus, and cancer. The number of people suffering such diseases, which are associated with an aging immune system, has increased along with the average age of the population. The immune system protects the body from bacteria, viruses, and other harmful substances, but the functional decline in the immune system with aging leaves the aged susceptible to infections. Immune cells such as T and B cells are derived from hematopoietic stem cells in the bone marrow. T-cell progenitors from the bone marrow need to mature by negative and positive selection in the thymus. Thus, aging is reflected in a deterioration of the thymus and bone marrow stem cells, resulting in a lowered functioning of the immune system. Stem cells include embryonic stem cells, induced pluripotent stem cells, and tissue-derived stem cells such as the bone marrow and umbilical cord blood-derived stem cells, which have been reported to be useful in treating a range of diseases. This chapter summarizes recent findings related to stem cells in aging-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ASCT:

Allogeneic stem cell transplantation

BMT:

Bone marrow transplantation

EPCs:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

GVHD:

Graft-versus-host disease

HSCs:

Hematopoietic stem cells

IBM-BMT:

Intrabone marrow-bone marrow transplantation

iPSCs:

Induced pluripotent stem cells

MHC:

Major histocompatibility complex

MSCs:

Mesenchymal stem cells

PD:

Parkinson’s disease

SAMP:

Senescence-accelerated mouse prone

T2DM:

Type 2 diabetes mellitus

TECs:

Thymic epithelial cells

TT:

Thymus transplantation

UCB:

Umbilical cord blood

References

  1. Acquarone M, de Melo TM, Meireles F, Brito-Moreira J, Oliveira G, Ferreira ST, et al. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson’s disease. Front Cell Neurosci. 2015;9:97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aggarwal R, Lu J, Kanji S, Joseph M, Das M, Noble GJ, et al. Human umbilical cord blood-derived CD34+ cells reverse osteoporosis in NOD/SCID mice by altering osteoblastic and osteoclastic activities. PLoS One. 2012;7:e39365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldoss I, Nademanee A. Allogeneic hematopoietic cell transplantation in non-Hodgkin’s lymphomas. Cancer Treat Res. 2015;165:329–44.

    Article  PubMed  Google Scholar 

  4. Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013;4:114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A. 2010;107:13426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102:11474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arpornmaeklong P, Wang Z, Pressler MJ, Brown SE, Krebsbach PH. Expansion and characterization of human embryonic stem cell-derived osteoblast-like cells. Cell Reprogram. 2010;12:377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aw D, Silva AB, Palmer DB. The effect of age on the phenotype and function of developing thymocytes. J Comp Pathol. 2010;142 Suppl 1:S45–59.

    Article  CAS  PubMed  Google Scholar 

  9. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 2014;15:37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernabei R, Martone AM, Ortolani E, Landi F, Marzetti E. Screening, diagnosis and treatment of osteoporosis: a brief review. Clin Cases Miner Bone Metab. 2014;11:201–7.

    PubMed  PubMed Central  Google Scholar 

  11. Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, et al. Efficacy and safety of autologous bone marrow derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell Transplant. 2014;23(9):1075–85.

    Article  PubMed  Google Scholar 

  12. Bose B, Shenoy SP, Konda S, Wangikar P. Human embryonic stem cell differentiation into insulin secreting beta-cells for diabetes. Cell Biol Int. 2012;36:1013–20.

    Article  CAS  PubMed  Google Scholar 

  13. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123:951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calvanese V, Fraga MF. SirT1 brings stemness closer to cancer and aging. Aging (Albany NY). 2011;3:162–7.

    Article  CAS  Google Scholar 

  15. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  16. Caruso C, Lio D, Cavallone L, Franceschi C. Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci. 2004;1028:1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Chen H, Zhou X, Emura S, Shoumura S. Site-specific bone loss in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol. 2009;44:792–8.

    Article  CAS  PubMed  Google Scholar 

  18. Cho SW, Sun HJ, Yang JY, Jung JY, Choi HJ, An JH, et al. Human adipose tissue-derived stromal cell therapy prevents bone loss in ovariectomized nude mouse. Tissue Eng Part A. 2012;18:1067–78.

    Article  CAS  PubMed  Google Scholar 

  19. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou SH, Lin SZ, Kuo WW, Pai P, Lin JY, Lai CH, et al. Mesenchymal stem cell insights: prospects in cardiovascular therapy. Cell Transplant. 2014;23:513–29.

    Article  PubMed  Google Scholar 

  21. Christoforou N, Gearhart JD. Stem cells and their potential in cell-based cardiac therapies. Prog Cardiovasc Dis. 2007;49:396–413.

    Article  CAS  PubMed  Google Scholar 

  22. Demuro A, Smith M, Parker I. Single-channel Ca(2+) imaging implicates Abeta1-42 amyloid pores in Alzheimer’s disease pathology. J Cell Biol. 2011;195:515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dixit VD. Impact of immune-metabolic interactions on age-related thymic demise and T cell senescence. Semin Immunol. 2012;24:321–30.

    Article  CAS  PubMed  Google Scholar 

  24. Dong W, Qiu C, Shen H, Liu Q, Du J. Antitumor effect of embryonic stem cells in a non-small cell lung cancer model: antitumor factors and immune responses. Int J Med Sci. 2013;10:1314–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Enciu AM, Nicolescu MI, Manole CG, Muresanu DF, Popescu LM, Popescu BO. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 2011;11:75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322:254–62.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A, Gutierrez E, Rodriguez-Mendez Mdel M, Ordonez A, et al. Age-related deregulation of naive T cell homeostasis in elderly humans. Age (Dordr). 2011;33:197–207.

    Article  CAS  Google Scholar 

  28. Gabr MM, Zakaria MM, Refaie AF, Ismail AM, Abou-El-Mahasen MA, Ashamallah SA, et al. Insulin-producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant. 2013;22:133–45.

    Article  PubMed  Google Scholar 

  29. Gao P, Ding Q, Wu Z, Jiang H, Fang Z. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett. 2010;290:157–66.

    Article  CAS  PubMed  Google Scholar 

  30. Ghodsizad A, Ruhparwar A, Bordel V, Mirsaidighazi E, Klein HM, Koerner MM, et al. Clinical application of adult stem cells for therapy for cardiac disease. Cardiovasc Ther. 2013;31:323–34.

    Article  PubMed  Google Scholar 

  31. Gonzalez C, Bonilla S, Flores AI, Cano E, Liste I. An update on human stem cell-based therapy in Parkinson’s disease. Curr Stem Cell Res Ther. 2015.

    Google Scholar 

  32. Griffith AV, Fallahi M, Venables T, Petrie HT. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell. 2012;11:169–77.

    Article  CAS  PubMed  Google Scholar 

  33. Hakim FT, Gress RE. Immunosenescence: deficits in adaptive immunity in the elderly. Tissue Antigens. 2007;70:179–89.

    Article  CAS  PubMed  Google Scholar 

  34. Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell. 2012;10:465–72.

    Article  CAS  PubMed  Google Scholar 

  35. Han F, Wang W, Chen B, Chen C, Li S, Lu X, et al. Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Cytotherapy. 2015;17:665–79.

    Article  CAS  PubMed  Google Scholar 

  36. Hao H, Liu J, Shen J, Zhao Y, Liu H, Hou Q, et al. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochem Biophys Res Commun. 2013;436:418–23.

    Article  CAS  PubMed  Google Scholar 

  37. Hu J, Li C, Wang L, Zhang X, Zhang M, Gao H, et al. Long term effects of the implantation of autologous bone marrow mononuclear cells for type 2 diabetes mellitus. Endocr J. 2012;59:1031–9.

    Article  PubMed  Google Scholar 

  38. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22:11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikehara S, Li M. Stem cell transplantation improves aging-related diseases. Front Cell Dev Biol. 2014;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013;2013:684736.

    Google Scholar 

  42. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.

    Article  CAS  PubMed  Google Scholar 

  43. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116:1413–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawabata A, Ohta N, Seiler G, Pyle MM, Ishiguro S, Zhang YQ, et al. Naive rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses. Cytotherapy. 2013;15:586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim SJ, Shin YW, Yang KH, Kim SB, Yoo MJ, Han SK, et al. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord. 2009;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res. 2009;87:2183–200.

    Article  CAS  PubMed  Google Scholar 

  47. Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, et al. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev. 2014;23:1611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kimura M, Tanaka S, Isoda F, Sekigawa K, Yamakawa T, Sekihara H. T lymphopenia in obese diabetic (db/db) mice is non-selective and thymus independent. Life Sci. 1998;62:1243–50.

    Article  CAS  PubMed  Google Scholar 

  49. Knorr DA, Ni Z, Hermanson D, Hexum MK, Bendzick L, Cooper LJ, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2013;2:274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuroda R, Matsumoto T, Miwa M, Kawamoto A, Mifune Y, Fukui T, et al. Local transplantation of G-CSF-mobilized CD34(+) cells in a patient with tibial nonunion: a case report. Cell Transplant. 2011;20:1491–6.

    Article  PubMed  Google Scholar 

  51. Kushida T, Inaba M, Hisha H, Ichioka N, Esumi T, Ogawa R, et al. Intra-bone marrow injection of allogeneic bone marrow cells: a powerful new strategy for treatment of intractable autoimmune diseases in MRL/lpr mice. Blood. 2001;97:3292–9.

    Article  CAS  PubMed  Google Scholar 

  52. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  CAS  PubMed  Google Scholar 

  53. Li F, Bronson S, Niyibizi C. Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. J Cell Biochem. 2010;109:643–52.

    Article  CAS  PubMed  Google Scholar 

  54. Li J, Huang NF, Zou J, Laurent TJ, Lee JC, Okogbaa J, et al. Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol. 2013;33:1366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li L, Hsu HC, Grizzle WE, Stockard CR, Ho KJ, Lott P, et al. Cellular mechanism of thymic involution. Scand J Immunol. 2003;57:410–22.

    Article  CAS  PubMed  Google Scholar 

  56. Li M, Abraham NG, Vanella L, Zhang Y, Inaba M, Hosaka N, et al. Successful modulation of type 2 diabetes in db/db mice with intra-bone marrow—bone marrow transplantation plus concurrent thymic transplantation. J Autoimmun. 2010;35:414–23.

    Article  CAS  PubMed  Google Scholar 

  57. Li M, Ikehara S. Bone marrow stem cell as a potential treatment for diabetes. J Diabetes Res. 2013;2013:329596.

    PubMed  PubMed Central  Google Scholar 

  58. Li M, Inaba M, Guo K, Abraham NG, Ikehara S. Amelioration of cognitive ability in senescence-accelerated mouse prone 8 (SAMP8) by intra-bone marrow-bone marrow transplantation. Neurosci Lett. 2009;465:36–40.

    Article  CAS  PubMed  Google Scholar 

  59. Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, Franceschi C, et al. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441:1094–6.

    Article  CAS  PubMed  Google Scholar 

  61. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5:133–9.

    Article  CAS  PubMed  Google Scholar 

  62. Liu XS, Li JF, Wang SS, Wang YT, Zhang YZ, Yin HL, et al. Human umbilical cord mesenchymal stem cells infected with adenovirus expressing HGF promote regeneration of damaged neuron cells in a Parkinson’s disease model. Biomed Res Int. 2014;2014:909657.

    PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, et al. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol. 2013;31:440–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells. Stem Cell Rev. 2013;9:435–50.

    Article  CAS  PubMed  Google Scholar 

  65. Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. Dev Comp Immunol. 2013;39:91–102.

    Article  CAS  PubMed  Google Scholar 

  66. Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, et al. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplant. 2013;22 Suppl 1:S113–26.

    Article  PubMed  Google Scholar 

  67. McNutt M. Cancer immunotherapy. Science. 2013;342:1417.

    Article  CAS  PubMed  Google Scholar 

  68. Min H, Montecino-Rodriguez E, Dorshkind K. Effects of aging on early B- and T-cell development. Immunol Rev. 2005;205:7–17.

    Article  CAS  PubMed  Google Scholar 

  69. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123:958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muller J, Ossig C, Greiner JF, Hauser S, Fauser M, Widera D, et al. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in Parkinsonian rats. Stem Cells Transl Med. 2015;4:31–43.

    Article  PubMed  CAS  Google Scholar 

  71. Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20:870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oliansky DM, Rizzo JD, Aplan PD, Arceci RJ, Leone L, Ravindranath Y, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of acute myeloid leukemia in children: an evidence-based review. Biol Blood Marrow Transplant. 2007;13:1–25.

    Article  PubMed  Google Scholar 

  73. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159:428–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A. 2011;108:20012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Park D, Yang YH, Bae DK, Lee SH, Yang G, Kyung J, et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging. 2013;34:2639–46.

    Article  CAS  PubMed  Google Scholar 

  76. Parmar S, Ritchie DS. Allogeneic transplantation as anticancer immunotherapy. Curr Opin Immunol. 2014;27C:38–45.

    Article  CAS  Google Scholar 

  77. Perin EC, Silva GV, Assad JA, Vela D, Buja LM, Sousa AL, et al. Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol. 2008;44:486–95.

    Article  CAS  PubMed  Google Scholar 

  78. Raikwar SP, Zavazava N. PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplant Res. 2012;1:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rube CE, Fricke A, Widmann TA, Furst T, Madry H, Pfreundschuh M, et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One. 2011;6:e17487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149:353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saidak Z, Hay E, Marty C, Barbara A, Marie PJ. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell. 2012;11:467–74.

    Article  CAS  PubMed  Google Scholar 

  82. Salani S, Donadoni C, Rizzo F, Bresolin N, Comi GP, Corti S. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J Cell Mol Med. 2012;16:1353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats. Cell Biol Int. 2014;38(12):1367–83.

    Article  CAS  PubMed  Google Scholar 

  84. Satake A, Schmidt AM, Nomura S, Kambayashi T. Inhibition of calcineurin abrogates while inhibition of mTOR promotes regulatory T cell expansion and graft-versus-host disease protection by IL-2 in allogeneic bone marrow transplantation. PLoS One. 2014;9:e92888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  86. Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115:3861–8.

    Article  CAS  PubMed  Google Scholar 

  87. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5:91–116.

    Article  CAS  PubMed  Google Scholar 

  88. Shah VK, Shalia KK. Stem cell therapy in acute myocardial infarction: a pot of gold or Pandora’s box. Stem Cells Int. 2011;2011:536758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489:322–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49:489–502.

    Article  CAS  PubMed  Google Scholar 

  91. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74–85.

    Article  PubMed  Google Scholar 

  92. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129:163–73.

    Article  CAS  PubMed  Google Scholar 

  93. Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, et al. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells. 2013;31:1548–62.

    Article  CAS  PubMed  Google Scholar 

  94. Takada K, Inaba M, Ichioka N, Ueda Y, Taira M, Baba S, et al. Treatment of senile osteoporosis in SAMP6 mice by intra-bone marrow injection of allogeneic bone marrow cells. Stem Cells. 2006;24:399–405.

    Article  PubMed  Google Scholar 

  95. Tang J, Xu H, Fan X, Li D, Rancourt D, Zhou G, et al. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta(1-40) injured rats. Neurosci Res. 2008;62:86–96.

    Article  CAS  PubMed  Google Scholar 

  96. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–8.

    Article  PubMed  Google Scholar 

  97. Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79:83–9.

    Article  CAS  PubMed  Google Scholar 

  98. Ueda Y, Inaba M, Takada K, Fukui J, Sakaguchi Y, Tsuda M, et al. Induction of senile osteoporosis in normal mice by intra-bone marrow-bone marrow transplantation from osteoporosis-prone mice. Stem Cells. 2007;25:1356–63.

    Article  CAS  PubMed  Google Scholar 

  99. Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell. 2013;12:31–6.

    Article  CAS  PubMed  Google Scholar 

  100. Whiteway A, Corbett T, Anderson R, Macdonald I, Prentice HG. Expression of co-stimulatory molecules on acute myeloid leukaemia blasts may effect duration of first remission. Br J Haematol. 2003;120:442–51.

    Article  CAS  PubMed  Google Scholar 

  101. Wu QY, Li J, Feng ZT, Wang TH. Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer’s disease rat model. Neurosci Lett. 2007;417:281–5.

    Article  CAS  PubMed  Google Scholar 

  102. Xiong N, Yang H, Liu L, Xiong J, Zhang Z, Zhang X, et al. bFGF promotes the differentiation and effectiveness of human bone marrow mesenchymal stem cells in a rotenone model for Parkinson’s disease. Environ Toxicol Pharmacol. 2013;36:411–22.

    Article  CAS  PubMed  Google Scholar 

  103. Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, et al. Concise reviews: cardiac disease modeling using induced pluripotent stem cells. Stem Cells. 2015;33(9):2643–51.

    Article  PubMed  Google Scholar 

  104. Yang H, Xie Z, Wei L, Yang S, Zhu Z, Wang P, et al. Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. Stem Cell Res Ther. 2013;4:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yeung TY, Seeberger KL, Kin T, Adesida A, Jomha N, Shapiro AM, et al. Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines. PLoS One. 2012;7:e38189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu B, He ZY, You P, Han QW, Xiang D, Chen F, et al. Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell. 2013;13:328–40.

    Article  CAS  PubMed  Google Scholar 

  107. Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX, Zeng Q, et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl). 2012;90:389–400.

    Article  CAS  Google Scholar 

  108. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009;104:e30–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Hosaka N, Cui Y, Shi M, Li M, Li Q, et al. Effects of intrabone marrow-bone marrow transplantation plus adult thymus transplantation on survival of mice bearing leukemia. Stem Cells Dev. 2012;21:1441–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Mr. Hilary Eastwick-Field and Ms. Keiko Ando for their help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ikehara M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, M., Ikehara, S. (2017). Stem Cells in Diseases of Aging. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_4

Download citation

Publish with us

Policies and ethics