Skip to main content

Exploring Chemistry Through the Source Function for the Electron and the Electron Spin Densities

  • Chapter
  • First Online:
Book cover Applications of Topological Methods in Molecular Chemistry

Abstract

The Source Function, a chemical descriptor introduced by Bader and Gatti in 1998, represents a challenging tool to see the electron density from an unusual perspective. Namely, as caused, at any point in the space, by source contributions operating at all other points of space. Summing up the local sources over the atomic basins of a system, enable us to regard the electron density at any system’s location as determined by smaller or larger contributions from all the atoms or group of atoms of the system. Such decomposition of sources provides valuable chemical insight and it may be applied, on the same grounds, to theoretically or experimentally derived electron densities. Two recent Source Function developments, specifically its application to detect subtle electron delocalization effects and its extension to the electron spin density sources are reviewed through this chapter. An original application, as viewed through the eyes of the Source Function, then follows each illustrated development. Precisely: (a) the electron delocalization mechanisms in complex and non planar aromatic systems, like the homotropylium cation and the 1,6-methano[10]annulene, and (b) the spin density transferability properties in a series of n-alkyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, the pseudo-7MR system is not rigorously planar. Here we intend the mean least-squares plane passing through the sp2 atoms.

Abbreviations

bcp:

Bond critical point

BP:

Bond path

CP:

Critical point

DI:

Delocalization index

ED:

Electron density

FHDD:

Fermi Hole Delocalization Density index

HOMA:

Harmonic Oscillator Model of Aromaticity

LS:

Local Source Function

MO:

Molecular Orbital

NBCC:

Non Bonded Charge Concentration

NICS:

Nucleus-Independent Chemical Shift

QTAIM:

Quantum Theory of Atoms in Molecules

PAH:

Polycyclic Aromatic Hydrocarbons

PDI:

Para-Delocalization Index

rp :

Reference point

SDD:

Electron Spin Density Distribution

SF:

Source Function (for the electron density)

SFS :

Source Function (for the electron spin density)

SF%:

Percentage Source Function (for the electron density)

SFS%:

Percentage Source Function (for the electron spin density)

SFLAI:

Source Function Local Aromaticity Index

3MR:

Three-Membered Ring

6MR:

Six-Membered Ring

7MR:

Seven-Membered Ring

10MR:

Ten-Membered Ring

References

  1. Bader RFW, Gatti C (1998) A Green’s function for the density. Chem Phys Lett 287:233–238

    Article  CAS  Google Scholar 

  2. Gatti C (2012) The source function descriptor as a tool to extract chemical information from theoretical and experimental electron densities. Struct Bond 147:193–286

    Article  CAS  Google Scholar 

  3. Gatti C (2013) Challenging chemical concepts through charge density of molecules and crystals. Phys Scripta 87:048102 (38 pp)

    Google Scholar 

  4. Arfken G (1985) Mathematical methods for physicists. Academic Press, Orlando

    Google Scholar 

  5. Bader RFW (1990) Atoms in molecules: a quantum theory. In: International series of monographs on chemistry, vol 22. Oxford Science Publications, Oxford UK

    Google Scholar 

  6. Gatti C, Cargnoni F, Bertini L (2003) Chemical information from the source function. J Comput Chem 24:422–436

    Article  CAS  Google Scholar 

  7. Hansen NK, Coppens P (1978) Electron population analysis of accurate diffraction data. 6. testing aspherical atom refinements on small-molecule data sets. Acta Cryst A 34:909–921

    Article  Google Scholar 

  8. Stewart RF, Bentley J, Goodman B (1975) Generalized X-ray scattering factors in diatomic molecules. J Chem Phys 63:3786–3793

    Article  CAS  Google Scholar 

  9. Gatti C, Macchi P (eds) (2012) Modern charge density analysis. Springer, Dordrecht

    Google Scholar 

  10. Lo Presti L, Gatti C (2009) Using the source function descriptor to dampen the multipole model bias in charge density studies from X-ray structure factor refinements. Chem Phys Lett 476:308–316

    Article  CAS  Google Scholar 

  11. Farrugia LJ, Cameron E, Tegel M (2006) Chemical bonds without “chemical bonding”? a combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J Phys Chem A 110:7952–7961

    Article  CAS  Google Scholar 

  12. Farrugia LJ, Cameron E, Lenz D et al (2009) The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: a combined experimental and theoretical study of (η 5-C5H5)Mn(CO)3, (η 6-C6H6)Cr(CO)3, and (E)-{(η 5-C5H4)CF-CF(η 5-C5H4)}(η 5-C5H5)2Fe2. J Am Chem Soc 131:1251–1268

    Article  CAS  Google Scholar 

  13. McGrady GS, Sirsch P, Chatterton NP et al (2009) Nature of the bonding in metal-silane σ-complexes. Inorg Chem 48:1588–1598

    Article  CAS  Google Scholar 

  14. Gatti C, Lasi D (2007) Source function description of metal–metal bonding in d-block organometallic compounds. Faraday Discuss 135:55–78

    Article  CAS  Google Scholar 

  15. Monza E, Gatti C, Lo Presti L et al (2011) Revealing electron delocalization through the source function. J Phys Chem A 115:12864–12878

    Article  CAS  Google Scholar 

  16. Lo Presti L, Ellern A, Destro R et al (2011) Rationalizing the effect of halogenation on the molecular structure of simple cyclobutene derivatives by topological real-space analysis of their electron density. J Phys Chem A 115:12695–12707

    Article  CAS  Google Scholar 

  17. Schmökel M, Cenedese S, Overgaard J et al (2012) Testing the concept of hypervalency: charge density analysis of K2SO4. Inorg Chem 51:8607–8616

    Article  Google Scholar 

  18. Engels B, Schmidt TC, Gatti C et al (2012) Challenging problems in charge density determination. Struct Bond 147:47–98

    Article  CAS  Google Scholar 

  19. Cocq K, Lepetit C, Maraval V et al (2015) “Carbo-aromaticity” and novel carbo-aromatic compounds. Chem Soc Rev 44:6535–6559. doi:10.1039/c5cs00244c

    Google Scholar 

  20. Bader RFW, Slee S, Cremer D et al (1983) Description of conjugation and hyperconjugation in terms of electron distributions. J Am Chem Soc 105:5061–5068

    Article  CAS  Google Scholar 

  21. Cremer D, Kraka E, Slee S et al (1983) Description of homoaromaticity in terms of electron distributions. J Am Chem Soc 105:5069–5075

    Article  CAS  Google Scholar 

  22. Barzaghi M, Gatti C (1987) Homoaromaticity versus Mobius aromaticity. J Chimie Physique 84:783–789

    CAS  Google Scholar 

  23. Gatti C, Barzaghi M, Simonetta M (1985) Charge density topological approach to the Dinorcaradiene↔[10]Annulene equilibrium in some 11, 11-Disubstituted 1,6-Methane[10]annulenes. J Am Chem Soc 107:878–887

    Article  CAS  Google Scholar 

  24. Simonetta M, Barzaghi M, Gatti C (1986) Cyclopropane ring closure in 11,11-Disubstituted 1,6-methano[10]annuelens. J Mol Struct (THEOCHEM) 138:39–50

    Article  Google Scholar 

  25. Mc Weeney R (1960) Some recent advances in density matrix theory. Rev Mod Phys 32:335–369

    Article  Google Scholar 

  26. Bader RFW, Stephens ME (1975) Spatial localization of the electronic pair and number distributions in molecules. J Am Chem Soc 97:7391–7399

    Article  CAS  Google Scholar 

  27. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  28. Poater J, Fradera X, Duran M et al (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J 9:400–406

    Article  CAS  Google Scholar 

  29. Matta CF, Hernàndez-Trujillo J (2003) Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. J Phys Chem A 107:7496–7504

    Article  CAS  Google Scholar 

  30. Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  31. Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–79

    Article  CAS  Google Scholar 

  32. Elser V, Haddon RC (1987) Icosahedral C60: an aromatic molecule with a vanishingly small ring current magnetic susceptibility. Nature 325:792–794

    Article  CAS  Google Scholar 

  33. Schleyer PVR, Maerker C, Dransfeld A et al (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  34. Bultinck P (2007) Critical analysis of the local aromaticity concept in poly-aromatic hydrocarbons. Faraday Discuss 135:347–365 and references therein

    Article  CAS  Google Scholar 

  35. Katritzky AR, Barczynski Musumarra G et al (1989) Aromaticity as a quantitative concept. 1. A statistical demonstration of the orthogonality of classical and magnetic aromaticity in five- and six-membered heterocycles. J Am Chem Soc 111:7–15

    Article  CAS  Google Scholar 

  36. Gatti C, Saleh G, Lo Presti L et al (2012) Making experiment and theory talking together: electron delocalization effects and non covalent interactions detection via the Source Function and the Reduced Density Gradient. In: Abstracts (page 42) of the Sagamore meeting XVII on Charge Spin and Momentum Densities, Daini Meisui Tei, Sapporo, Hokkaido, Japan, 15–20 July 2012

    Google Scholar 

  37. Gatti C (2013) New descriptors for an “unbiased” and chemically insightful comparison of ab-initio and X-ray derived charge densities. In: Abstracts of Natta’s Seeds Grow, From the crystallography and modelling of stereoregular polymers to the challenges of complex systems, International symposium on occasion of the 50th anniversary of the award of the Nobel Prize for Chemistry to Giulio Natta and Ziegler, Politecnico di Milano, 21–22 Nov 2013

    Google Scholar 

  38. Saleh G (2014) Chemical paradigms seen through charge density descriptor lenses, Ph.D. thesis, Università degli Studi, Milano, Italy

    Google Scholar 

  39. Gatti C, Saleh G, Lo Presti L (2015) Source Function applied to experimental densities reveals subtle electron delocalization effects and appraises their transferability properties in crystals. Acta Cryst B, invited feature article under review

    Google Scholar 

  40. Hendrickson JB, Cram DJ, Hammond GS (1970) Organic chemistry, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  41. Cysewski P (2011) Influence of thermal vibrations on aromaticity of benzene. Phys Chem Chem Phys 13:12998–13008

    Article  CAS  Google Scholar 

  42. Breslow R (1973) Antiaromaticity. Acc Chem Res 6:393–398

    Article  CAS  Google Scholar 

  43. Pal R, Mukherjee S, Chandrasekhar S et al (2014) Exploring cyclopentadienone antiaromaticity: charge density studies of various tetracyclones. J Phys Chem A 118:3479–3489

    Article  CAS  Google Scholar 

  44. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books

    Google Scholar 

  45. Yao T, Yu H, Vermeij RJ et al (2008) Nonplanar aromatic compounds. Part 10: a strategy for the synthesis of aromatic belts-all wrapped up or down the tubes? Pure Appl Chem 80:533–546

    Article  CAS  Google Scholar 

  46. Bodwell GJ, Bridson JN, Cyrañski MK et al (2003) Nonplanar aromatic compounds. 8. Synthesis, crystal structures, and aromaticity investigations of the 1, n-Dioxa[n](2,7)pyrenophanes. How does bending affect the cyclic π-electron delocalization of the pyrene system? J Org Chem 68:2089–2098

    Article  CAS  Google Scholar 

  47. Dobrowolski MA, Cyrañski MK, Merner BL et al (2008) Interplay of π-electron delocalization and strain in [n](2,7)Pyrenophanes. J Org Chem 73:8001–8009

    Article  CAS  Google Scholar 

  48. Claessens CG, González-Rodríguez D, Rodríguez-Morgade MS et al (2014) Subphthalocyanines, subporphyrazines, and subporphyrins: singular nonplanar aromatic systems. Chem Rev 114:2192–2277

    Article  CAS  Google Scholar 

  49. Winstein S, Sonnenberg J, deVries L (1959) The Tris-homocyclopropenyl cation. J Am Chem Soc 81:6523–6524

    Article  CAS  Google Scholar 

  50. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). McNaught AD, Wilkinson A (eds) Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0–9678550-9-8. doi:10.1351/goldbook

  51. Freeman PK (2005) Neutral homoaromaticity in some heterocyclic systems. J Org Chem 70:1998–2001

    Article  CAS  Google Scholar 

  52. Williams RV, Kurtz HA (1994) Homoaromaticity. Adv Phys Org Chem 29:273–331

    CAS  Google Scholar 

  53. Jorgensen WL (1975) Chemical consequences of orbital interactions. II. Ethylene and butadiene bridged polycyclic hydrocarbons containing three- and four-membered rings. J Am Chem Soc 97:3082–3090

    Article  CAS  Google Scholar 

  54. Jorgensen WL (1976) The energetic impact of monohomoaromaticity. J Am Chem Soc 98:6784–6789

    Article  CAS  Google Scholar 

  55. Haddon RC (1974) Homoaromatic, nonhomoaromatic, antihomoaromatic, and dihomoaromatic character. Tetrahedron Lett 2797–2800

    Google Scholar 

  56. Haddon RC (1974) The involvement of the cyclobutane ring in homoaromatic conjugation. Tetrahedron Lett 15:4303–4304

    Article  Google Scholar 

  57. Haddon RC (1975) Perturbational molecular orbital (PMO) theory of homoaromaticity. J Am Chem Soc 97:3608–3615

    Article  CAS  Google Scholar 

  58. Hehre WJ (1973) Homoaromatic stability. J Am Chem Soc 95:5807–5809

    Article  CAS  Google Scholar 

  59. Childs RF, Cremer D, Elia G (1995) Cyclopropyl homoconjugation-experimental facts and interpretations. In: Rappoport Z (ed) The chemistry of functional groups: the chemistry of the cyclopropyl group, vol 2. Wiley, Chichester, pp 411–468 and references therein

    Google Scholar 

  60. Cremer D, Reichel F, Kraka E (1991) Homotropenylium cation: structure, stability, and magnetic properties. J Am Chem Soc 113:9459–9466

    Article  CAS  Google Scholar 

  61. Childs RF (1984) The homotropylium ion and homoaromaticity. Acc Chem Res 17:347–352

    Article  CAS  Google Scholar 

  62. Williams RV (2001) Homoaromaticity. Chem Rev 101:1185–1204

    Article  CAS  Google Scholar 

  63. Minkin VI, Glukhovtsev MN, Simkin BY (1994). Homoaromaticity. Aromaticity and antiaromaticity. Electronic and structural aspects, Chapter 6. Wiley, New York, pp 230–251

    Google Scholar 

  64. Reindl B, Clark T, Schleyer PVR (1998) Modern molecular mechanics and ab initio calculations on benzylic and cyclic delocalized cations. J Phys Chem A 102:8953–8963

    Article  CAS  Google Scholar 

  65. Alkorta I, Elguero J, Eckert-Maksič M et al (2004) Influence of the H/F replacement on the homoaromaticity of homotropylium ion: a GIAO/DFT theoretical study. Tetrahedron 60:2259–2265

    Article  CAS  Google Scholar 

  66. Cremer D, Olsson L, Reichel F et al (1993) Calculation of NMR chemical shifts—the third dimension of quantum chemistry. Isr J Chem 33:369–385

    Article  CAS  Google Scholar 

  67. Brown EC, Bader RFW, Werstiuk NH (2009) QTAIM study on the degenerate Cope rearrangements of 1,5-Hexadiene and Semibullvalene. J Phys Chem A 113:3254–3265

    Article  CAS  Google Scholar 

  68. Genaev AM, Sal’nikov GE, Shubin VG (2007) Energy barriers to carousel rearrangements of carbocations: quantum-chemical calculations vs. experiment. Russ J Org Chem 43:1134–1138

    Article  CAS  Google Scholar 

  69. Barzaghi M, Gatti C (1988) Substituent effect on the planarization energy and the relative stability of Winstein and Möbius structures of the homotropylium cation. J Mol Struct (THEOCHEM) 167:275–300

    Article  Google Scholar 

  70. Godbout N, Salahub DR, Andzelm J et al (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  71. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  72. Gatti C Unpublished result (available upon request)

    Google Scholar 

  73. Available from Prof. Bader’s RFW Laboratory. McMaster University, Hamilton, Canada L8S 4M1. http://www.chemistry.mcmaster.ca/aimpac/

  74. Cordero B, Gómez V, Platero-Plats AE et al (2008) Covalent radii revisited. Dalton Trans 2832–2838

    Google Scholar 

  75. Hill RK, Giberson CB, Silverton JV (1988) Forfeiture of the aromaticity of a Bridged[10]Annulene by benzannelation. J Am Chem Soc 110:497–500

    Article  CAS  Google Scholar 

  76. Mitchell RH (2001) Measuring aromaticity by NMR. Chem Rev 101:1301–1316

    Article  CAS  Google Scholar 

  77. Creary X, Miller KJ (2003) Stabilized and destabilized carbocations in the 1,6-methano[10]annulene series. J Org Chem 68:8683–8692

    Article  CAS  Google Scholar 

  78. Creary X, Miller KJ (2002) 1,6-Methano[10]annulene-stabilized radicals. Org Lett 3493–3496

    Google Scholar 

  79. Vogel E, Roth HD (1964) Synthese eines cyclodecapentaens. Angew Chem 76:145

    Article  CAS  Google Scholar 

  80. Bianchi R, Pilati T, Simonetta M (1972) A very long carbon–carbon bond in a cyclopropane derivative. J Chem Soc Chem Commun 1073–1074

    Google Scholar 

  81. Bianchi R, Morosi G, Mugnoli A et al (1973) The influence of substituents on the equilibrium bisnorcaradiene-[10]annulene. The crystal and molecular structure of 11,11-dimethyltricyclo[4,4,1,01,6]undeca-2,4,7,9-tetraene. Acta Crystallogr Sect B 29:1196–1208

    Article  CAS  Google Scholar 

  82. Bianchi R, Pilati T, Simonetta M (1981) On the equilibrium [10]Annulene↔Bisnorcaradiene. X-ray study of the β-Form of 11-Methyltricyclo[4.4.1.01,6]undeca-2,4,7,9-tetraene-11-carbonitrile at two temperatures. J Am Chem Soc 103:6426–6431

    Article  CAS  Google Scholar 

  83. Vogel E, Scholl T, Lex J et al (1982) Norcaradiene valence tautomer of a 1,6-Methanol[10]annulene:Tricyclo[4.4.1.01,6]undeca-2,4,7,9-tetraene-11,11-dicarbonitrile. Angew Chem Int Ed Engl 21:869–870

    Article  Google Scholar 

  84. Caramori GF, Kleber T, Galembeck SE et al (2007) Aromaticity and homoaromaticity in Methano[10]annulenes. J Org Chem 72:76–85

    Article  CAS  Google Scholar 

  85. Bianchi R, Destro R, Merati F (1991) Electrostatic properties and topological analysis of the charge density of syn-1,6:8,13-Biscarbonyl[14]Annulene derived from X-ray diffraction data at 16 K. In: Jeffrey GA, Piniella JF (eds) The application of charge density research to chemistry and drug design, vol 250. NATO ASI Series, pp 340–340

    Google Scholar 

  86. Ohno H, Chiba D, Matsukura F et al (2000) Electric-field control of ferrromagnetism. Nature 408:944–946

    Article  CAS  Google Scholar 

  87. Issadore D, Park YI, Shao H et al (2014) Magnetic sensing technologies for molecular analyses. Lab Chip 14:2385–2397

    Article  CAS  Google Scholar 

  88. Zhang Q, Li B, Chen L (2013) First-principle study of microporous magnets M-MOF-74 (M = Ni Co, Fe, Mn): the role of metal centers. Inorg Chem 52:9356–9362

    Article  CAS  Google Scholar 

  89. Eisenträger A, Vella D, Griffiths IM (2014) Particle capture efficiency in a multi-wire model for high gradient magnetic separation. Appl Phys Lett 105:033508

    Article  Google Scholar 

  90. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  91. Nandi S (2003) Magnetic X-ray scattering. In: Characterization of materials. Wiley

    Google Scholar 

  92. Shirane G, Shapiro SM, Tranquada JM (2002) Neutron scattering with a triple-axis spectrometer—basic techniques. Cambridge University Press, Cambridge

    Book  Google Scholar 

  93. Gillon B, Sangregorio C, Caneschi A et al (2007) Experimental spin density in the high spin ground state of the Fe8pcl cluster. Inorg Chim Acta 360:3802–3806

    Article  CAS  Google Scholar 

  94. Gatti C, Orlando AM, Lo Presti L (2015) Insights on spin poplarization through the spin density source function. Chem. Sci. 6:3845–3852

    Article  CAS  Google Scholar 

  95. Pacansky J, Waltman RJ, Barnes RA (1993) Studies on the structure and β-bond scission reactions of primary Alkyl radicals, CH3(CH2)nCH2O, for n = 1–6. J Phys Chem 97:10694–10701

    Article  CAS  Google Scholar 

  96. Deutsch M, Gillon B, Claiser N et al (2014) First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments. IUCrJ 1:194–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Danish National Research Foundation for partial funding of this work through the Center for Materials Crystallography (DNRF93).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Gatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gatti, C., Orlando, A.M., Monza, E., Lo Presti, L. (2016). Exploring Chemistry Through the Source Function for the Electron and the Electron Spin Densities. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_5

Download citation

Publish with us

Policies and ethics