Skip to main content

Photosynthesis, Antioxidant Protection, and Drought Tolerance in Plants

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Drought stress usually leads to reductions in crop yield, which can result from many drought-induced morphological, physiological, and metabolic changes that occur in plants. In this chapter, we review the most recent reports on drought-induced responses in plants, focusing on the role of oxidative stress as well as on other possible mechanisms. A key sign of drought stress at the molecular level is the accelerated production of reactive oxygen species. Levels of leaf and root enzymatic antioxidants (peroxidase, catalase, and glutathione reductase), nonenzymatic antioxidants (glycine betaine), and stress parameters (hydrogen peroxide and malondialdehyde) were determined under watered and drought stress conditions in two durum wheat genotypes differing in drought resistance. The dehydration of wheat leaves and roots was accompanied by the accumulation of H2O2, MDA, and GB, a phase change in the activity of antioxidant enzymes, indicating the development of oxidative stress. Activities of antioxidant enzymes under drought stress were shown to relate de novo synthesis of some isoenzymes. The activity, some physicochemical and kinetic parameters of carbonic anhydrase were comparatively studied in the flag leaves, ear elements, and root systems of wheat genotypes during ontogenesis. TRAP markers linked to the QTL for the drought tolerance were used for the molecular assessment of drought tolerance of wheat genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah F, Hareri F, Naaesan M, Ammar MA, Kanbar OZ. Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. J Agric Sci. 2011;3(3):127–33.

    Google Scholar 

  • Al-Doss AA, Saleh M, Moustafa KA, Elshafei AA, Barakat MN. Comparative analysis of diversity based on morpho-agronomic traits and molecular markers in durum wheat under heat stress. Afr J Biotechnol. 2011;10:3671–81.

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001;24:1337–44.

    Article  CAS  Google Scholar 

  • Aliyev J, Guliyev N, Hidayatov RB. Isolation and some properties of wheat leaf carbonic anhydrase. News Azerbaijan Acad Sci Ser Biol Sci. 1989;5:15–29 (in Russian).

    Google Scholar 

  • Aliyev J, Кrimov SC, Guliyev N, Ahmedova A. Features of C metabolism in wheat genotypes with contrasting photosynthetic signs. Plant Physiol. 1996;43(1):49–56 (in Russian).

    Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N. Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta. 2007;1767:1363–71.

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant. 1997;100:224–33.

    Article  CAS  Google Scholar 

  • Anderson M, Prasad T, Stewart C. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 1995;109:1247–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative systems in plants. Curr Sci. 2002;82:1227–38.

    CAS  Google Scholar 

  • Asada K. Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer RJ, editors. Photoinhibition of photosynthesis From molecular mechanisms to the field. Oxford: Bios Scientific; 1994. p. 129–42.

    Google Scholar 

  • Azizi-e-Chakherchaman S, Mostafaei H, Yari A, Hassanzadeh M, Jamaati-e-Somarin S, Easazadeh R. Study of relationships of leaf relative water content, cell membrane stability and duration of growth period with grain yield of lentil under rainfed and irrigated conditions. Res J Biol Sci. 2009;4:842–7.

    Google Scholar 

  • Badiani M, De Biasi MG, Cologna M, Artemi F. Catalase, peroxidase and superoxide dismutase activities in seedlings submitted to increasing water deficit. Agrochimica. 1990;34:90–102.

    CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Cỏme D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sun flower seed as related to deterioration during accelerated aging. Physiol Plant. 1996;97:104–10.

    Article  CAS  Google Scholar 

  • Barakat MN, Al-Doss AA, Moustafa KA, Ahmed EI, Elshafei AA. Morphological and molecular characterization of Saudi wheat genotypes under drought stress. J Food Agric Environ. 2010;8:220–8.

    CAS  Google Scholar 

  • Barakat MN, Wahba LE, Milad SI. Molecular mapping of QTLs for wheat flag leaf senescence under water-stress. Biol Plant. 2013;57:79–84.

    Article  CAS  Google Scholar 

  • Behnamnia M, Kalantari KM, Rezanejad F. Exogenous application of brassino steroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen Appl Plant Physiol. 2009;35:22–34.

    CAS  Google Scholar 

  • Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants. Plant Physiol. 2000;122:1379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 1981;21:43–7.

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R, editors. Biochemistry and molecular biology of plants. Rockville: American Society of Plant Physiologists; 2000. p. 1158–249.

    Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD. Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol. 1989;90:322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL. Biochemistry and molecular biology of plants. Rockville: American Society Plant Physiologists; 2000.

    Google Scholar 

  • Budak H, Kantar M, Kurtoglu KY. Drought tolerance in modern and wild wheat. Sci World J. 2013;548246:16 p, doi:10.1155/2013/548246

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot. 2002;89:907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornic G, Massacci A. Leaf photosynthesis under drought stress. In: Baker NR, editor. Photosynthesis and the environment. Dordrecht: Kluwer; 1996. p. 347–66.

    Google Scholar 

  • Cuypers A, Vangronsveld J, Ciijsters H. Peroxidases in roots and primary leaves of Pharsalus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol. 2002;159:869–76.

    Article  CAS  Google Scholar 

  • Da Costa M, Huang B. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. J Am Soc Hortic Sci. 2007;132(3):319–26.

    Google Scholar 

  • Davis B. Disc electrophoresis. I. Method and application to human serum proteins. Ann N Y Acad Sci. 1964;121:404–27.

    Article  CAS  PubMed  Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci. 2004;190:6–12.

    Article  Google Scholar 

  • Di Fiore A, Alterio V, Monti SM, De Simone G, D'Ambrosio K. Thermostable carbonic anhydrases in biotechnological applications. Int J Mol Sci. 2015;16(7):15456–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon BM. The effect of pH on the affinities of enzymes for substraties and inhibitors. Biochem. 1953;55(2):161–71.

    Article  CAS  Google Scholar 

  • Dudoladova MV, Markelova AG, Lebedeva NV, Pronina N. Compartmentalization of α-and β-carbonic anhydrases in cells of halo and alkalophilic cyanobateria Rhabdoderma lineare. Plant Physiol. 2004;51:896–904 (in Russian).

    Google Scholar 

  • Elshafei A, Saleh M, Al-Doss AA, Moustafa KA, Al-Qurainy FH, Barakat MN. Identification of new SRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water- stressed condition. Aust J Crop Sci. 2013;7:887–93.

    CAS  Google Scholar 

  • Esfandiari E, Shekari F, Esfandiari M. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedlings. Not Bot Agrobot Cluj. 2007;35:48–56.

    CAS  Google Scholar 

  • Fan J, Xu H, Luo Y, Wan M, Huang J, Wang W, Li Y. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella. Appl Microbiol Biotechnol. 2015;99(5):2451–62.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira FJ, Guo C, Coleman JR. Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seeding survivorship. Plant Physiol. 2008;147(2):585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry JG. The gamma class of carbonic anhydrases. Biochim Biophys Acta. 2010;1804(2):374–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ. Photo oxidative stress in plants. Plant Physiol. 1994;92:696–717.

    Article  CAS  Google Scholar 

  • Fucc L, Oliver CN, Coon MJ. Inactivation of metabolic enzymes by mixed-function oxidation reaction: possible implication in protein turnover and aging. Proc Natl Acad Sci U S A. 1983;80:1521–5.

    Article  Google Scholar 

  • Greive CM, Grattan SR. Rapid assay for determination of water-soluble quaternary amino compounds. Plant Soil. 1983;70:303–7.

    Article  Google Scholar 

  • Guliev NM, Babaev GG, Bairamov SM, Aliev DA. Purification, properties, and localization of two carbonic anhydrase from Amaranthus cruentus leaves. Russ J Plant Physiol. 2003;50(2):213–9.

    Article  CAS  Google Scholar 

  • Guliyev N, Mamedov TH, Aliyev J. Subunit structure of carbonic anhydrase of chick-pea leaves. Rep USSR Acad Sci. 1985;280(6):1466–8 (in Russian).

    Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem. 2006;44:828–36.

    Article  CAS  PubMed  Google Scholar 

  • Habibpor M, Valizadeh M, Shahbazi H, Ahmadizadeh M. Study of drought tolerance with cell membrane stability testing and relation with the drought tolerance indices in genotypes of wheat (Triticum aestivum L.). World Appl Sci J. 2011;13(7):1654–60.

    Google Scholar 

  • Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Hewett-Emmett D, Tashian RE. Functional diversity, conservation and convergence in the evolution of α-, β- and γ-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996;5:50–70.

    Article  CAS  PubMed  Google Scholar 

  • Hiltonen T, Bjorkbacka H, Forsman C, Clarke AK, Samuelsson G. İntracellular β-carbonic anhydrase of the unicellular green alga Coccomyxa: cloning of the cDNA and characterization of the functional enzyme overexpressed in Escherichia coli. Plant Physiol. 1998;117:1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Vick BA. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep. 2003;21:289–94.

    Article  CAS  Google Scholar 

  • Jang IC, Park SY, Kim KY, Kwon SY, Kim JG, Kwak SS. Differential expression of 10 sweet potato peroxidase genes in response to bacterial pathogen, Pectobacterium chrysanthemi. Plant Physiol Biochem. 2004;42:451–5.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. J Exp Bot. 2002;53:2401–10.

    Article  CAS  PubMed  Google Scholar 

  • Keles Y, Oncel I. Response of the antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci. 2002;163:783–90.

    Article  CAS  Google Scholar 

  • Khanna-Chopra R, Selote DS. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than susceptible wheat cultivar under field conditions. Environ Exp Bot. 2007;60:276–83.

    Article  CAS  Google Scholar 

  • Kisiel W, Graf G. Purification and characterization of carbonic anhydrase from Pisum sativum. Phytochemistry. 1972;11(1):113–7.

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J Exp Bot. 2004;56:337–46.

    Article  PubMed  CAS  Google Scholar 

  • Kruk J, Hollander-Czytko H, Oettmeier W, Trebst A. Tocopherol as singlet oxygen scavenger in photosystem II. J Plant Physiol. 2005;162:749–57.

    Article  CAS  PubMed  Google Scholar 

  • Kupriyanova EV, Pronina N. Carbonic anhydrase—an enzyme that converted the biosphere. Plant Physiol. 2011;58(2):163–76 (in Russian).

    Google Scholar 

  • Lascano HR, Antonicelli GE, Luna CM, Melchiorre MN, Gomez LD, Raca RW, Trippi VS, Casano LM. Antioxidant system response of different wheat cultivars under drought: Field and in vitro studies. Aust J Plant Physiol. 2001;28:1095–102.

    CAS  Google Scholar 

  • Lawson WR, Henry RJ, Kochman JK, Kong GA. Genetic diversity in sunflower (Helianthus annus L.) as revealed by random amplified polymorphic DNA analysis. Aust J Agric Res. 1994;45:1319–27.

    Google Scholar 

  • Lei Y, Yin C, Li C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus prezwalskii. Physiol Plant. 2006;127:187–91.

    Article  CAS  Google Scholar 

  • Lenaz G. Role of mitochondria in oxidative stress and aging. Biochim Biophys Acta. 1998;1366:53–67.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001;103:455–61.

    Article  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet. 2005;111:782–94.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M. The molecular evolution of beta-carbonic anhydrase in Flaveria. J Exp Bot. 2011;62(9):3071–81.

    Article  CAS  PubMed  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot. 2005;56(411):417–23.

    Google Scholar 

  • Manifesto MM, Schlatter A, Hopp HE, Suarez EY, Dubcovsky J. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci. 2001;41:682–90.

    Article  CAS  Google Scholar 

  • Martins Júnior RR, Costa Oliveira MS, Baccache MA, Monteiro de Paula F. Effects of water deficit and rehydration on the polar lipid and membranes resistance leaves of Phaseolus vulgaris L. cv Pérola. Braz Arch Biol Technol. 2008;51:361–7.

    Article  Google Scholar 

  • McWilliam J. The dimensions of drought. In: Baker F, editor. Drought resistance in cereals. Wallingford: CAB International; 1989. p. 1–11.

    Google Scholar 

  • Mead JF. Free radical mechanism of lipid damage and consequences for cellular membranes. In: Pryor WA, editor. Freed radicals in biology. New York: Academic; 1976. p. 51–68.

    Chapter  Google Scholar 

  • Meldrum NV, Roughton FJW. Some properties of carbonic anhydrase the CO2 enzyme present in blood. J Physiol. 1932;75:15–6.

    CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler S. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.

    Article  CAS  PubMed  Google Scholar 

  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–10.

    Article  CAS  PubMed  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho JFR, Filho LFP, Pereira JCB, Vieira LGE. Evaluation of the stress inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant. 2007;130:218–29.

    Article  CAS  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G. Carbonic anhydrase in plants age. Plant Cell Environ. 2001;24:141–53.

    Article  CAS  Google Scholar 

  • Moustafa KA, Saleh M, Al-Doss AA, Elshafei AA, Salem AK, Al-Qurainy FH, Barakat MN. Identification of TRAP and SRAP markers linked with yield components under drought stress in wheat (Triticum aestivum L.). Plant Omics J. 2014;7(4):253–9.

    Google Scholar 

  • Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8:4321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscolo A, Sidari M, Panuccio M. Tolerance of kikuyu grass to long term salt stress is associated with induction antioxidant defenses. Plant Growth Regul. 2003;41:57–62.

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.

    Article  CAS  PubMed  Google Scholar 

  • Pandey HC, Baig MJ, Chandra A, Bhatt RK. Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. J Environ Biol. 2010;31(4):435–40.

    CAS  PubMed  Google Scholar 

  • Pocker Y, Ng JSY. Plant carbonic anhydrase: Properties and carbon dioxide hydration kinetics. Biochem. 1973;12(25):5127–34.

    Article  CAS  Google Scholar 

  • Pronina NA. Organization and physiological role of CO2-concentrating mechanism in photosynthesis of microalgae. Plant Physiol. 2000;47:801–10 (in Russian).

    Google Scholar 

  • Pronina N, Allahverdiyev SI, Kupriyanova EV, Klyachko-Girvich GL, Klimov VV. Localization of carbonic anhydrase in pea subchloroplast particles. Plant Physiol. 2002;49(3):341–9 (in Russian).

    Google Scholar 

  • Queiroz CGS, Alonso A, Mares-Guia M, Magalhães AC. Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biol Planta. 1998;41:403–13.

    Article  CAS  Google Scholar 

  • Racchi ML, Bagnoli F, Balla I, Daut S. Differential activity of catalase and superoxide dismutase in seedlings and in vitro micro propagated Oak (Quercus robur L.). Plant Cell Rep. 2001;20:169–74.

    Article  CAS  Google Scholar 

  • Rajasekaran IR, Kriedemann PF, Aspinall D, Paleg IG. Physiological significance of proline and glycinebetaine: Maintaining photosynthesis during NaCl stress in wheat. Photosynthetica. 1997;34:357–66.

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996;110:125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Harris PJC, Ashraf M. Stress environments and their impact on crop production. In: Ashraf M, Harris PJC, editors. Abiotic stresses: plant resistance through breeding and molecular approaches. New York: Haworth Press; 2005. p. 3–18.

    Google Scholar 

  • Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 1993;44:357–84.

    Article  CAS  Google Scholar 

  • Rickli EE, Chazanfar SAS, Gibbons BH, Edsall JT. Carbonic anhydrase from human erythrocytes. Preparation and properties of two enzymes. J Biol Chem. 1964;239:1065–78.

    CAS  PubMed  Google Scholar 

  • Roughton FJW, Both VH. The effect of substrate concentration, pH and other factors upon the activity of carbonic anhydrase. Biochem J. 1964;40(40):319–20.

    Google Scholar 

  • Rowlett RS. Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim Biophys Acta. 2010;1804(2):362–73.

    Article  CAS  PubMed  Google Scholar 

  • Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK. AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Bio Genet. 2004;42:43–59.

    Article  CAS  Google Scholar 

  • Rubio MC, González EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Planta. 2002;115:531–40.

    Article  CAS  Google Scholar 

  • Sairam R, Deshmukh P, Saxena D. Role of antioxidant systems in wheat genotype tolerance to water stress. Biol Planta. 1998;41:387–94.

    Article  CAS  Google Scholar 

  • Saleh MS, Al-Doss AA, Elshafei AA, Moustafa KA, Al-Qurainy FH, Barakat MN. Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biol Planta. 2014;58:64–70.

    Article  CAS  Google Scholar 

  • Saneoka H, Moghaieb REA, Premachandra GS, Fujita K. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ Exp Bot. 2004;52:131–8.

    Article  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE. A rapid, sensitive, and versatile assay for protein using coomassie Brilliant Blue G-250. Anal Biochem. 1977;79:544–52.

    Article  CAS  PubMed  Google Scholar 

  • Selote DS, Khanna-Chopra R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant. 2004;121(3):462–71.

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA. Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at maturation stage. Colloids Surf B Biointerfaces. 2005a;45:7–13.

    Article  CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA. Adaptation of higher plants to stresses and stress signal transduction. Acta Ecol Sin. 2005b;25:1871–82.

    Google Scholar 

  • Sharma P, Dubey RS. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol. 2005;162:854–64.

    Article  CAS  PubMed  Google Scholar 

  • Shpak G. On the biological role of carbonic anhydrase in animal organisms. Successes Modern Biol. 1980;89:18–27 (in Russian).

    CAS  Google Scholar 

  • Simova-Stoilova L, Dermirevska K, Petrova T, Tsenov N, Feller U. Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul. 2009;58:107–17.

    Article  CAS  Google Scholar 

  • Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem. 2010;48:200–6.

    Article  CAS  PubMed  Google Scholar 

  • Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environ. 2002;81:337–54.

    Article  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith IM, Al-Neimi T, Dyer WE, Ho TD, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 2000;155:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Miszalski Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol. 2007;54(1):39–50.

    CAS  PubMed  Google Scholar 

  • Smith KS, Ferry JG. Prokaryotic carbonic anhydrase. FEMS Microbiol Rev. 2000;24:335–66.

    Article  CAS  PubMed  Google Scholar 

  • Sofo AB, Dichio C, Xiloyannis C, Masia C. Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant. 2004;121:58–65.

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A. Antioxidant defenses in olive trees during drought stress: changes in activity of some antioxidant enzymes. Plant Biol. 2005;32:45–53.

    CAS  Google Scholar 

  • Stadie WC, O’Brien H. The catalysis of the hydration of carbonic dioxide and dehydration of carbonic acid by the enzyme from red blood cells. J Biochem. 1933;103:521–9.

    CAS  Google Scholar 

  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol. 2011;2:34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E. Plant physiology. 4th ed. Sunderland: Sinecure; 2006. 764 p.

    Google Scholar 

  • Takeda S, Matsuoka M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet. 2008;9:444–57.

    Article  CAS  PubMed  Google Scholar 

  • Tambussi EA, Nogues S, Araus JL. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta. 2005;19:1–25.

    Google Scholar 

  • Tatar O, Gevrek M. Influence of water stress on proline accumulation, lipid peroxidation and water content of wheat. Asian J Plant Sci. 2008;7:409–12.

    Article  CAS  Google Scholar 

  • Tester M. Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327(5967):818–22.

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci. 2006;11:405–12.

    Article  CAS  PubMed  Google Scholar 

  • Uzildaya B, Turkana I, Sekmena AH, Ozgura R, Karakayab HC. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci. 2012;182:59–70.

    Article  CAS  Google Scholar 

  • Vieira da Silva J, Naylor AW, Kramer PJ. Some ultrastructural and enzymatic effects of drought stress in cotton (Gossypium hirsutum L.) leaves. Proc Natl Acad Sci U S A. 1974;71:3243–324.

    Article  CAS  Google Scholar 

  • Visser B. Technical aspects of drought tolerance. Biotechnology Dev Monitor. 1994;18:5.

    Google Scholar 

  • Walk AR, Metzner H. Purification and characterization of chloroplast carbonate dehydratase from leaves of Lactuca sativa. Hoppe Seylers Z Physiol Chem. 1975;356(11):1733–41.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Pan J, Li X, He H, Wu A, Cai R. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Sci China Ser. 2005;48:213–20.

    Article  CAS  Google Scholar 

  • Wang S, Liang D, Li C, Hao Y, Ma F, Shu H. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol Biochem. 2012;51:81–9.

    Article  CAS  PubMed  Google Scholar 

  • Weigel P, Weretilnyk EA, Hanson AD. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 1986;82:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei-Hong S, Wu Y-Y, Zhen-Zhen S, Wu Q-X, Xin-Yu W. Enzymatic characteristics of higher plant carbonic anhydrase and its role in photosynthesis. J Plant Stud. 2014;3(2):39–44.

    Article  CAS  Google Scholar 

  • Wilbur KM, Anderson NG. Electrometric and colometric determination of carbonic anhydrase. J Biol Chem. 1948;176:147–51.

    CAS  PubMed  Google Scholar 

  • Williams JG, Kubelik KJ, Livak JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res. 1990;18:6531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Lian B, Hao J, Liu C, Wang S. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values. Sci Rep. 2015;5:7733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu SS, Hu J, Faris JD. Molecular characterization of Langdon durum wheat Triticum dicoccoides chromosome substitution lines using TRAP (target region amplification polymorphism) markers. In: Pogna NE, Romano EA, Pogna EA, Galterio G, editors. Proceedings of the 10th international wheat genetic symposium, vol. 1. Rome: Institute Sperimentale per la Cerealicoltura; 2003. p. 91–4.

    Google Scholar 

  • Yannarelli GG, Fernandez-Alvarez AJ, Santa-Cruz DM, Tomaro ML. Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry. 2007;68:505–12.

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 2000;38:171–86.

    Article  CAS  Google Scholar 

  • Yu JW, Price GD, Song L, Badger MR. Isolation of a putative carboxysomal carbonic anhydrase gene from the cyanobacterium Synechococcus PCC 7942. Plant Physiol. 1992;100:794–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabaleta E, Martin MV, Braun HP. A basal carbon concentrating mechanism in plants? Plant Sci. 2012;187:97–104.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SA, Ferry JG. The beta and gamma classes of carbonic anhydrase. Curr Pharm Des. 2008;14:716–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant (EIF-2010-1(1)-40/24-M-20) of the Science Development Foundation under the President of the Republic of Azerbaijan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irada M. Huseynova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huseynova, I.M., Rustamova, S.M., Aliyeva, D.R., Babayev, H.G., Aliyev, J.A. (2016). Photosynthesis, Antioxidant Protection, and Drought Tolerance in Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_15

Download citation

Publish with us

Policies and ethics