Skip to main content

Metabolic Engineering of Phenylpropanoids in Plants

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Phenylpropanoids are diverse group of active secondary metabolites derived from the carbon backbone of amino acids phenylalanine and tyrosine. The phenylpropanoid pathway serves as the starting point for the biosynthesis of a wide range of organic compounds such as lignins, flavanols, isoflavanoids, anthocyanins, and stilbenes with an array of important functions including plant defense and structural support. Besides, they have major nutritional and pharmaceutical properties that find uses as food supplements, antioxidants, flavoring agents, insecticides, dyes, and pharmacological drugs. Major structural and regulatory genes of the phenylpropanoid pathway and associated branches have been isolated and characterized in the recent times. Consequently, the engineering of phenylpropanoid biosynthesis in plants and other ex-host systems have generated considerable scientific and economic importance to enhance their production. In this chapter, we summarize the recent advances in our knowledge of the phenylpropanoid biosynthesis. In addition, we discuss the recent strategies with respect to genetic and metabolic engineering of different phenylpropanoids in plants and microorganisms for their successful industrial production in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4CL:

4-Hydroxycinnamate CoA-ligase

ACC:

Acetyl CoA carboxylase

ACS:

Acetyl CoA synthase

AMP:

Adenosine mono phosphate

ANS:

Anthocyanidin synthase

C3′H:

p-Coumaroyl-shikimate 3’ hydroxylate

C4H:

Cinnamate 4-hydroxylase

CAD:

Cinnamyl alcohol dehydrogenase

CCR:

Cinnamoyl CoA reductase

CHI:

Chalcone isolmerase

CHS:

Chalcone synthase

CiED:

Cipher of evolutionary design

COMT:

Caffeoyl CoA 3-O-methyltransferase

CPR:

Cytochrome P450

DFR:

Dihydrofavonol reductase

DMAPP:

Dimethyl allyl pyrophosphate

F3H:

Flavonone 3-hydroxylase

FLS:

Flavonone synthase

FPP:

Farnesyl pyrophosphate

GPP:

Geranyl pyrophosphate

H2O2 :

Hydrogen peroxide

HCT:

Hydroxysinnamoyl-CoA shikimate:quinate hydroxylcinnamoyltransferase

HID:

2-Hydroxyisoflavanone dehydratase

IFS:

Isoflavonone synthase

IPP:

Isopentyl pyrophosphate

LAR:

Leuco anthocyanidin reductase

PA:

Proanthocyanidins

PAL:

Phenylalanine ammonia lyase

PAP:

Production of anthocyanin pigment

PLR:

Pinoresinol/lariciresinol reductase

References

  1. Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317. doi:10.1007/s00425-014-2232-x

    Article  CAS  Google Scholar 

  2. O’Conner SE (2015) Engineering of secondary metabolism. Annu Rev Genet 49:5.1–5.24. doi:10.1146/annurev-genet-120213-092053

    Google Scholar 

  3. Naoumkina MA, He X, Dixon RA (2008) Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biol 8:132. doi:10.1186/1471-2229-8-132

    Article  CAS  Google Scholar 

  4. Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S (2008) Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 69(1):38–48. doi:10.1016/j.phytochem.2007.06.010

    Article  CAS  Google Scholar 

  5. Xu M, Dong J, Wang H, Huang L (2009) Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor induced flavonol glycoside accumulation of Ginkgo biloba cells. Plant Cell Environ 32:960–967. doi:10.1111/j.1365-3040.2009.01976.x

    Article  CAS  Google Scholar 

  6. Gonzalez-Teuber M, Heil M (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813. doi:10.4161/psb.4.9.9393

    Article  CAS  Google Scholar 

  7. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97. doi:10.1007/s11101-005-3748-2

    Article  CAS  Google Scholar 

  8. Dewick PM (2002) Medicinal natural products, a biosynthetic approach, 2nd edn. Wiley, Chichester, 507 p. ISBN 0-471-496413

    Google Scholar 

  9. Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229. doi:10.1016/j.biotechadv.2010.11.006

    Article  CAS  Google Scholar 

  10. Kitaoka N, Lu X, Yang B, Peters RJ (2015) The application of synthetic biology to elucidation of plant mono-, sesqui-, and diterpenoid metabolism. Mo Plant 8:6–16. doi:10.1016/j.molp.2014.12.002

    Article  CAS  Google Scholar 

  11. McDaniel R, Welch M, Hutchinson CR (2005) Genetic approaches to polyketide antibiotics. Chem Rev 105:543–558. doi:10.1021/cr0301189

    Article  CAS  Google Scholar 

  12. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20. doi:10.1093/mp/ssp106

    Article  CAS  Google Scholar 

  13. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769. doi:10.1146/annurev.arplant.59.032607.092730

    Article  CAS  Google Scholar 

  14. Patton GC, van der Donk WA (2005) New developments in lantibiotic biosynthesis and mode of action. Curr Opin Microbiol 8:543–551. doi:10.1016/j.mib.2005.08.008

    Article  CAS  Google Scholar 

  15. McCranie EK, Bachmann BO (2014) Bioactive oligosaccharide natural products. Nat Prod Rep 31:1026–1042. doi:10.1039/c3np70128j

    Article  CAS  Google Scholar 

  16. Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9, e0152. doi:10.1199/tab.0152

    Article  Google Scholar 

  17. Ververidis F, Trantas E, Douglas C, Vollmer G, Kretzschmar G, Panopoulos N (2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: chemical diversity, impacts on plant biology and human health. Biotechnol J 2:1214–1234. doi:10.1002/biot.200700084

    Article  CAS  Google Scholar 

  18. Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28(3):257–270. doi:10.1046/j.1365-313X.2001.01140.x

    Article  CAS  Google Scholar 

  19. Xie Y, Xu D, Cui W, Shen W (2012) Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Expt Bot 63:3869–3883. doi:10.1093/jxb/ers078

    Article  CAS  Google Scholar 

  20. Kataoka I, Beppu K (2004) UV irradiance increases development of red skin color and anthocyanins in ‘Hakuho’ peach. Hortscience 39(6):1234–1237

    CAS  Google Scholar 

  21. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid like compounds by Rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  22. D’Almeida RE, Alberto MR, Quispe C, Schmeda-Hirschmann G, Isla MI (2012) Antimicrobial phenylpropanoids from the Argentinean highland plant Parastrephia lucida (Meyen) Cabrera. J Ethno Pharmacol 142(2):407–414. doi:10.1016/j.jep.2012.05.010

    Article  CAS  Google Scholar 

  23. Hemaiswarya S, Doble M (2013) Combination of phenylpropanoids with 5-fluorouracil as anti-cancer agents against human cervical cancer (HeLa) cell line. Phytomedicine 20(2):151–158. doi:10.1016/j.phymed.2012.10.009

    Article  CAS  Google Scholar 

  24. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19(5):470–474. doi:10.1038/88150

    Article  CAS  Google Scholar 

  25. Tian Q, Wang X, Li C, Lu W, Yang L, Jiang Y, Luo K (2013) Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS One 8(10), e76369. doi:10.1371/journal.pone.0076369

    Article  CAS  Google Scholar 

  26. Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1(3):251–257

    Article  CAS  Google Scholar 

  27. Noel JP, Austin MB, Bomati EK (2005) Structure-function relationships in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol 8:249–253. doi:10.1016/j.pbi.2005.03.013

    Article  CAS  Google Scholar 

  28. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071. doi:10.1104/pp.103.026484

    Article  CAS  Google Scholar 

  29. Hamberger B, Ellis M, Friedmann M, Souza CDA, Barbazuk B, Douglas CJ (2007) Genome-wide analyses of phenylpropanoid related genes in Populus trichocarpa, Arabidopsis thaliana and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 85:1182–1201. doi:10.1139/B07-098

    Article  CAS  Google Scholar 

  30. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J Exp Bot 60(2):509–521. doi:10.1093/jxb/ern290

    Article  CAS  Google Scholar 

  31. Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65(11):1557–1564. doi:10.1016/j.phytochem.2004.05.006

    Article  CAS  Google Scholar 

  32. Rasmussen S, Dixon RA (1999) Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 8:1537–1552

    Article  Google Scholar 

  33. Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J et al (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771. doi:10.1105/tpc.104.023705

    Article  CAS  Google Scholar 

  34. Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:796–807. doi:10.1104/pp.006262

    Article  Google Scholar 

  35. Chang A, Lim MH, Lee SW, Robb EJ, Nazar RN (2008) Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. J Biol Chem 283:33591–33601. doi:10.1074/jbc.M804428200

    Article  CAS  Google Scholar 

  36. Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538. doi:10.1104/pp.110.157370

    Article  CAS  Google Scholar 

  37. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Co localization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109. doi:10.1105/tpc.104.024406

    Article  CAS  Google Scholar 

  38. Sato T, Takabe K, Fujita M (2004) Immuno-localization of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase in differentiating xylem of poplar. Comptes Rendus Biol 327(9-10):827–836. doi:10.1016/j.crvi.2004.08.005

    Article  CAS  Google Scholar 

  39. Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125. doi:10.1016/S0031-9422(02)00513-7

    Article  CAS  Google Scholar 

  40. Lu F, Ralph J, Akiyama T, Kim H, Schatz PF, Marita JM, Ralph SA, Reddy MSS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853. doi:10.1074/jbc.M511598200

    Article  CAS  Google Scholar 

  41. Chen F, Reddy SM, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124. doi:10.1111/j.1365-313X.2006.02857.x

    Article  CAS  Google Scholar 

  42. Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C (2009) Mutations in the cinnamate4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60:771–782. doi:10.1111/j.1365-313X.2009.03996.x

    Article  CAS  Google Scholar 

  43. Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC (2003) The 1.75Å crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–2873. doi:10.1021/bi0271603

    Article  CAS  Google Scholar 

  44. Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103. doi:10.1074/jbc.M209362200

    Article  CAS  Google Scholar 

  45. Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59. doi:10.1046/j.1365-313X.2002.01267.x

    Article  CAS  Google Scholar 

  46. Do CT, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129. doi:10.1007/s00425-007-0558-3

    Article  CAS  Google Scholar 

  47. Petersen M, Strack D, Matern U (1999) Biosynthesis of phenylpropanoids and related compounds. Biochemistry of plant secondary metabolism. Annual Plan Rev 2:51–222. doi:10.1002/9781444320503.ch4

    Google Scholar 

  48. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effect of genetic manipulations/mutations on lignification and vascular integrity. Phytochem 61:221–292. doi:10.1016/S0031-9422(02)00211-X

    Article  CAS  Google Scholar 

  49. Boudet A, Hawkins S, Rochange S (2004) The polymorphism of the genes/enzymes involved in the last two reductive steps of monolignol synthesis: what is the functional significance? C R Biol 327:837–845. doi:10.1016/j.crvi.2004.04.007

    Article  CAS  Google Scholar 

  50. Ibrahim RK (2001) Phenylpropanoid metabolism. In: Encyclopedia of life sciences. Wiley, Chichester. doi:10.1038/npg.els.0001912

    Google Scholar 

  51. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi:10.1104/pp.110.155119

    Article  CAS  Google Scholar 

  52. Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–441. doi:10.1016/j.copbio.2005.06.011

    Article  CAS  Google Scholar 

  53. Davin B, Jourdes M, Patten AM, Kim KW, Vassao DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25(6):1015–1090. doi:10.1039/b510386j

    Article  CAS  Google Scholar 

  54. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2(3):371–390. doi:10.1023/B:PHYT.0000045487.02836.32

    Article  CAS  Google Scholar 

  55. Umezawa T (2005) Biosynthesis of lignans, lignins, and norlignans. Kagaku Seibutsu 43:461–467

    Article  CAS  Google Scholar 

  56. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53(4):273–284. doi:10.1007/s10086-007-0892-x

    Article  CAS  Google Scholar 

  57. Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46(3):356–370. doi:10.1016/j.plaphy.2007.12.009

    Article  CAS  Google Scholar 

  58. Winkel-Shirley B (2006) The biosynthesis of flavonoids. In: Grotewold E (ed) The science of flavonoids. Springer, New York, pp 71–95

    Chapter  Google Scholar 

  59. Ferreyra MLF, Ruis SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222. doi:10.2289/flps.2012.00222

    Google Scholar 

  60. Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86(5):1293–1312. doi:10.1007/s00253-010-2512-8

    Article  CAS  Google Scholar 

  61. Wang X (2011) Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct Integr Genom 11(1):13–22. doi:10.1007/s10142-010-0197-9

    Article  CAS  Google Scholar 

  62. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 117:143–155. doi:10.1016/j.plantsci.2009.05.012

    Article  CAS  Google Scholar 

  63. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223. doi:10.1016/S1369-5266(02)00256-X

    Article  CAS  Google Scholar 

  64. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkey flowers. Nature 426(6963):176–178. doi:10.1038/nature02106

    Article  CAS  Google Scholar 

  65. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110

    Article  CAS  Google Scholar 

  66. Pelletier MK, Shirley BW (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Plant Physiol 111:339–345. doi:10.1104/pp.111.1.339

    Article  CAS  Google Scholar 

  67. Nakajima J, Tanaka I, Seo S, Yamazaki M, Saito S (2004) LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J Biomed Biotech 5:241–247. doi:10.1155/S1110724304404045

    Article  Google Scholar 

  68. Lipiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430. doi:10.1146/annurev.arplant.57.032905.105252

    Article  CAS  Google Scholar 

  69. Shi MZ, Xie DY (2014) Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Patents Biotechnol 8(1):47–60. doi:10.2174/1872208307666131218123538

    Article  CAS  Google Scholar 

  70. Jung W, Yu O, Lau SMC, O’Keefe DPO, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212. doi:10.1038/72671

    Article  CAS  Google Scholar 

  71. Latunde-Dada A, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Werk-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), anovel plant P-450 monoxygenase. J Biol Chem 276:1688–1695. doi:10.1074/jbc.M006277200

    Article  CAS  Google Scholar 

  72. Akashi T, Aoki T, Ayabe SI (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase involvement of carboxyl esterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137(3):882–891. doi:10.1104/pp.104.056747

    Article  CAS  Google Scholar 

  73. Martens S, Preuss A, Matern U (2010) Multifunctional flavonoid dioxygenases: flavonols and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71:1040–1049. doi:10.1016/j.phytochem.2010.04.016

    Article  CAS  Google Scholar 

  74. Kuhn BM, Geisler M, Bigler L, Ringli C (2011) Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiol 156:585–595. doi:10.1104/pp.111.175976

    Article  CAS  Google Scholar 

  75. Toda K, Kuroiwa H, Senthil K, Shimada N, Aoki T, Ayabe S, Shimada S, Sakuta M et al (2012) The soybean F3′H protein is localized to the tonoplast in the seed coat hilum. Planta 236:79–89. doi:10.1007/s00425-012-1590-5

    Article  CAS  Google Scholar 

  76. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. doi:10.1021/np200906s

    Article  CAS  Google Scholar 

  77. Peled-Zehavi H, Oliva M, Xie Q, Tzin V, Oren-Shamir M, Aharoni A, Galili G (2015) Metabolic engineering of the phenylpropanoid and its primary precursor pathway to enhance the flavor of fruits and the aroma of flowers. Bioengineering 2:204–212. doi:10.3390/bioengineering2040204

    Article  Google Scholar 

  78. Cummings M, Breitling R, Takano E (2014) Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol Lett 351:116–125. doi:10.1111/1574-6968.12365

    Article  CAS  Google Scholar 

  79. Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187. doi:10.1016/S0958-1669(02)00308-7

    Article  CAS  Google Scholar 

  80. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447. doi:10.1038/nbt1251

    Article  CAS  Google Scholar 

  81. Wu S, Jiang Z, Kempinski C, Eric Nybo S, Husodo S, Williams R, Chappell J (2012) Engineering triterpene metabolism in tobacco. Planta 236:867–877. doi:10.1007/s00425-012-1680-4

    Article  CAS  Google Scholar 

  82. Bergmann S, Sch¨umann J, Scherlach K, Lange C, Brakhage A, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217. doi:10.1038/nchembio869

    Article  CAS  Google Scholar 

  83. Wang H, Dong Q, Guan A, Meng C, Shi X, Guo Y (2011) Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. J Biosci Bioeng 112(1):26–31. doi:10.1016/j.jbiosc.2011.03.006

    Article  CAS  Google Scholar 

  84. Zhao S, Tuan PA, Li X, Kim YB, Kim HR, Park CG et al (2013) Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 14:802. doi:10.1186/1471-2164-14-802

    Article  CAS  Google Scholar 

  85. Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762. doi:10.1111/j.1365-313X.2008.03436.x

    Article  CAS  Google Scholar 

  86. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678. doi:10.1038rgg/330677a0

    Google Scholar 

  87. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 12(2):155–160. doi:10.1016/S0958-1669(00)00192-0

    Article  CAS  Google Scholar 

  88. Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–274. doi:10.1021/jf011429s

    Article  CAS  Google Scholar 

  89. Bovy A, Schijlen E, Hall RD (2007) Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics 3:399–412. doi:10.1007/s11306-007-0074-2

    Article  CAS  Google Scholar 

  90. Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S et al (2002) High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene LC and C1. Plant Cell 14:2509–2526. doi:10.1105/tpc.004218

    Article  CAS  Google Scholar 

  91. Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258(5089):1773–1775. doi:10.1126/science.1465611

    Article  CAS  Google Scholar 

  92. Martens S, Forkmann G, Britsch L, Wellmann F, Matern U, Lukacin R (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett 544(1–3):93–98. doi:10.1016/S0014-5793(03)00479-4

    Article  CAS  Google Scholar 

  93. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CH, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53(377):2099–2106. doi:10.1093/jxb/erf044

    Article  CAS  Google Scholar 

  94. Colliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev 1:113–123. doi:10.1023/A:1015848724102

    Article  CAS  Google Scholar 

  95. Schijlen EG, de Vos CH, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC et al (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144(3):1520–1530. doi:10.1104/pp.107.100305

    Article  CAS  Google Scholar 

  96. van der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4(3):253–262. doi:10.1105/tpc.4.3.253

    Article  Google Scholar 

  97. Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498. doi:10.1046/j.1365-313X.1997.11030489.x

    Article  CAS  Google Scholar 

  98. Fowler ZL, Gikandi WW, Koffas MA (2009) Increased malonyl coenzyme a biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839. doi:10.1128/AEM.00270-09

    Article  CAS  Google Scholar 

  99. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366. doi:10.1016/j.ymben.2009.07.004

    Article  CAS  Google Scholar 

  100. Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400. doi:10.1016/j.ymben.2011.02.002

    Article  CAS  Google Scholar 

  101. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706

    Article  CAS  Google Scholar 

  102. Leonard E, Lim KH, Saw PN, Koffas MA (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886. doi:10.1128/AEM.00200-07

    Article  CAS  Google Scholar 

  103. Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198

    Article  CAS  Google Scholar 

  104. Ro DK, Douglas CJ (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J Biol Chem 279:2600–2607. doi:10.1074/jbc.M309951200

    Article  CAS  Google Scholar 

  105. Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969. doi:10.1016/j.ymben.2005.11.001

    Article  CAS  Google Scholar 

  106. Veitch NC (2007) Isoflavonoids of the leguminosae. Nat Prod Rep 24:417–464. doi:10.1039/c3np70024k

    Article  CAS  Google Scholar 

  107. Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1–9. doi:10.1104/pp.104.057257

    Article  CAS  Google Scholar 

  108. Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259. doi:10.1104/pp.105.062539

    Article  CAS  Google Scholar 

  109. Lozovaya VV, Lygin AV, Zernova OV, Ulanov AV, Li S, Hartman GL, Widholm JM (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225:665–679. doi:10.1007/s00425-006-0368-z

    Article  CAS  Google Scholar 

  110. Shimamura M, Akashi T, Sakurai N, Suzuki H, Saito K, Shibata D, Ayabe S, Aoki T (2007) 2-Hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japonicus. Plant Cell Physiol 48(11):1652–1657. doi:10.1093/pcp/pcm125

    Article  CAS  Google Scholar 

  111. Yu O, Shi J, Hession AO, Maxwell AA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soy-bean seeds. Phytochemistry 63:753–763. doi:10.1016/S0031-9422(03)00345-5

    Article  CAS  Google Scholar 

  112. Sharma SB, Dixon RA (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J 44:62–75. doi:10.1111/j.1365-313X.2005.02510.x

    Article  CAS  Google Scholar 

  113. Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907. doi:10.1111/j.1365-313X.2006.02655.x

    Article  CAS  Google Scholar 

  114. Leonard E, Koffas MA (2007) Engineering of artificial cytochrome P450 enzymes for the synthesis of siflavones by Escherichia coli. Appl Environ Microbiol 73:7246–7251. doi:10.1128/AEM.01411-07

    Article  CAS  Google Scholar 

  115. Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388. doi:10.1104/pp.104.054502

    Article  CAS  Google Scholar 

  116. Chemler JA, Fowler ZL, McHugh KP, Koffas MA (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12:96–104. doi:10.1016/j.ymben.2009.07.003

    Article  CAS  Google Scholar 

  117. Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24(2):329–335. doi:10.1016/j.copbio.2012.07.004

    Article  CAS  Google Scholar 

  118. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600. doi:10.1093/pcp/pcm131

    Article  CAS  Google Scholar 

  119. Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959. doi:10.1007/s00299-007-0401-010

    Article  CAS  Google Scholar 

  120. Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem 74:1760–1769. doi:10.1271/bbb.100358

    Article  CAS  Google Scholar 

  121. Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268. doi:10.1023/A:1024018729349

    Article  CAS  Google Scholar 

  122. Nakatsuka T, Mishiba K, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M (2010) Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J Plant Physiol 167:231–237. doi:10.1016/j.jplph.2009.08.00710

    Article  CAS  Google Scholar 

  123. Yonekura-Sakakibara K, Fukushima A, Nakabayashi R et al (2012) Two glycosyl transferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J 69(1):154–167. doi:10.1111/j.1365-313X.2011.04779.x

    Article  CAS  Google Scholar 

  124. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGMW, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308. doi:10.1038/nbt.1506

    Article  CAS  Google Scholar 

  125. Gatica-Arias A, Farag MA, Stanke M, Matousek J, Wessjohann L, Weber G (2012) Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. Plant Cell Rep 31:111–119. doi:10.1007/s00299-011-1144-5

    Article  CAS  Google Scholar 

  126. Zvi MM, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195:335–345. doi:10.1111/j.1469-8137.2012.04161.x

    Article  CAS  Google Scholar 

  127. Qiu J, Gao F, Shen G, Li C, Han X, Zhao Q, Zhao D, Hua X, Pang Y (2013) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of saussurea involucrate. PLoS One 8(8), e70665. doi:10.1371/journal.pone.0070665

    Article  CAS  Google Scholar 

  128. Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154(3):1470–1480. doi:10.1104/pp.110.164160

    Article  CAS  Google Scholar 

  129. Yuan L, Wang L, Han Z, Jiang Y, Zhao L, Liu H, Yang L, Luo K (2012) Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants. J Exp Bot 63(7):2513–2524. doi:10.1093/jxb/err425

    Article  CAS  Google Scholar 

  130. Akagi T, Ikegami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K (2009) DkMyb4 is a MYB transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol 151(4):2028–2045. doi:10.1104/pp.109.146985

    Article  CAS  Google Scholar 

  131. Paolocci F, Robbins MP, Madeo L, Arcioni S, Martens S, Damiani F (2011) Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in lotuscorniculatus. Plant Physiol 143(1):504–516. doi:10.1104/pp.106.090886

    Article  CAS  Google Scholar 

  132. Morales M, Ros Barcelo A, Pedreno MA (2000) Plant stilbenes: recent advances in their chemistry and biology. Adv Plant Physiol 3:39–70

    Google Scholar 

  133. Halls C, Yu O (2008) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 26(2):77–81. doi:10.1016/j.tibtech.2007.11.002

    Article  CAS  Google Scholar 

  134. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E et al (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361(6408):153–156. doi:10.1038/361153a0

    Article  CAS  Google Scholar 

  135. Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S, Courot E (2012) Metabolic engineering of yeast and plants for the production of the biologically active hydroxy stilbene, resveratrol. J Biomed Biotechnol 2012:579089. doi:10.1155/2012/579089

    Article  CAS  Google Scholar 

  136. Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76(10):3361–3363. doi:10.1128/AEM.02796-09

    Article  CAS  Google Scholar 

  137. Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos CH, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672. doi:10.1128/AEM.00609-06

    Article  CAS  Google Scholar 

  138. Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells. J Am Chem Soc 128:13030–13031. doi:10.1021/ja0622094

    Article  CAS  Google Scholar 

  139. Katsuyama Y, Funa N, Miyahisa I, Horinouchi S (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621. doi:10.1016/j.chembiol.2007.05.004

    Article  CAS  Google Scholar 

  140. Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57(7):1069–1084. doi:10.1016/S0031-9422(01)00092-9

    Article  CAS  Google Scholar 

  141. Vanholme R, Morreal K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. doi:10.1111/j.1469.8137.2012.04337.x

    Article  CAS  Google Scholar 

  142. Poovaiah CR, Rao NM, Soneji JR, Baxter HL, Stewart CN (2014) Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol J 12:1163–1173. doi:10.1111/pbi.12225

    Article  CAS  Google Scholar 

  143. Berthet S, Caulet DN, Pollet B, Bidzinski P, Cezard L, Bris LP, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23(3):1124–1137. doi:10.1105/tpc.110.082792

    Article  CAS  Google Scholar 

  144. Satake H, Koyama T, Bahabadi SE, Matsumoto E, Ono E, Murata J (2015) Essences in metabolic engineering of lignan biosynthesis. Metabolites 5:270–290. doi:10.3390/metabo5020270

    Article  CAS  Google Scholar 

  145. Kim HJ, Ono E, Morimoto K, Yamagaki T, Okazawa A, Kobayashi A, Satake H (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50:2200–2209. doi:10.1093/pcp/pcp156

    Article  CAS  Google Scholar 

  146. Ionkova I, Antonova I, Momekov G, Fuss E (2010) Production of podophyllotoxin in Linum linearifolium in vitro cultures. Pharmacogn Mag 6(23):180–185. doi:10.4103/0973-1296.66932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SN and JNM are thankful for the award of Research Fellowship from the Dept. of Biotechnology, Govt. of India. We are thankful to Prof. Manoj Ranjan Nayak, President, Siksha ‘O’ Anusandhan University, Bhubaneswar, India, for his guidance and support. We also thank DST-FIST, Govt. of India, for the research infrastructure facilities provided to Centre of Biotechnology, Siksha O Anusandhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Nanda, S., Mohanty, J.N., Mishra, R., Joshi, R.K. (2017). Metabolic Engineering of Phenylpropanoids in Plants. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_30

Download citation

Publish with us

Policies and ethics