Skip to main content

An Excursion Through Quantitative Model Refinement

  • Conference paper
  • First Online:
  • 451 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9504))

Abstract

There is growing interest in creating large-scale computational models for biological process. One of the challenges in such a project is to fit and validate larger and larger models, a process that requires more high-quality experimental data and more computational effort as the size of the model grows. Quantitative model refinement is a recently proposed model construction technique addressing this challenge. It proposes to create a model in an iterative fashion by adding details to its species, and to fix the numerical setup in a way that guarantees to preserve the fit and validation of the model. In this survey we make an excursion through quantitative model refinement – this includes introducing the concept of quantitative model refinement for reaction-based models, for rule-based models, for Petri nets and for guarded command language models, and to illustrate it on three case studies (the heat shock response, the ErbB signaling pathway, and the self-assembly of intermediate filaments).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Azimi, S., Petre, I.: Quantitative model refinement for guarded command models. To appear (2015)

    Google Scholar 

  2. Bassingthwaighte, J.B.: Strategies for the physiome project. Ann. Biomed. Eng. 28(8), 1043–1058 (2000)

    Article  Google Scholar 

  3. Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of erbb signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5, 239 (2009)

    Google Scholar 

  4. Craciun, G., Pantea, C.: Identifiability of chemical reaction networks. J. Math. Chem. 44(1), 244–259 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Czeizler, E., Czeizler, E., Iancu, B., Petre, I.: Quantitative model refinement as a solution to the combinatorial size explosion of biomodels. In: Proceedings of the 2nd International Workshop on Static Analysis and Systems Biology (SASB 2011), Electronic Notes in Theoretical Computer Science, vol. 284, pp. 35–53 (2012)

    Google Scholar 

  6. Czeizler, E., Mizera, A., Czeizler, E., Back, R.J., Eriksson, J.E., Petre, I.: Quantitative analysis of the self-assembly strategies of intermediate filaments from tetrameric vimentin. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 9(3), 885–898 (2012)

    Article  Google Scholar 

  7. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-based modeling of biochemical networks. Complexity 10(4), 22–41 (2005)

    Article  Google Scholar 

  9. Gratie, C., Petre, I.: Fit-Preserving data refinement of mass-action reaction networks. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 204–213. Springer, Heidelberg (2014)

    Google Scholar 

  10. Gratie, C., Petre, I.: Fit-preserving data refinement of mass-action reaction networks. Technical Report, Turku Centre for Computer Science (2014)

    Google Scholar 

  11. Gratie, C., Petre, I.: Complete characterization for the fit-preserving data refinement of mass-action reaction networks. Technical Report 1128, Turku Centre for Computer Science (2015)

    Google Scholar 

  12. Gratie, D.E., Iancu, B., Azimi, S., Petre, I.: Quantitative model refinement in four different frameworks, with applications to the heat shock response. Technical Report 1067, TUCS (2013)

    Google Scholar 

  13. Gratie, D.-E., Iancu, B., Petre, I.: ODE analysis of biological systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 29–62. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Gratie, D.E., Petre, I.: Hiding the combinatorial state space explosion of biomodels through colored petri nets. Annals of University of Bucharest LXI, pp. 23–41 (2014)

    Google Scholar 

  15. Herrmann, H., Aebi, U.: Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem. 73(1), 749–789 (2004)

    Article  Google Scholar 

  16. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: Copasi–a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006). http://bioinformatics.oxfordjournals.org/content/22/24/3067.abstract

  17. Hornberg, J., Binder, B., Bruggeman, F., Schoeberl, B., Heinrich, R., Westerhoff, H.: Control of MAPK signalling: from complexity to what really matters. Oncogene 24(36), 5533–5542 (2005)

    Article  Google Scholar 

  18. Hucka, M., et al.: The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003). http://bioinformatics.oxfordjournals.org/content/19/4/524.abstract

  19. Iancu, B., Czeizler, E., Czeizler, E., Petre, I.: Quantitative refinement of reaction models. Int. J. Unconventional Comput. 8(5–6), 529–550 (2012)

    Google Scholar 

  20. Iancu, B.: Quantitative Refinement of Reaction-Based Biomodels. Ph.D. thesis, Turku Centre for Computer Science (2015)

    Google Scholar 

  21. Iancu, B., Gratie, D.-E., Azimi, S., Petre, I.: On the implementation of quantitative model refinement. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 95–106. Springer, Heidelberg (2014)

    Google Scholar 

  22. Ibssa, N.: Quantitative model refinement (2015). http://combio.abo.fi/research/quantitative-model-refinement/

  23. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Springer-Verlag, Berlin Heidelberg (2009)

    Book  MATH  Google Scholar 

  24. Karr, J.R., Sanghvi, J.C., Macklin, D.N., Gutschow, M.V., Jacobs, J.M., Bolival, B., Assad-Garcia, N., Glass, J.I., Covert, M.W.: A whole-cell computational model predicts phenotype from genotype. Cell 150(2), 389–401 (2012)

    Article  Google Scholar 

  25. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application. John Wiley & Sons, New York (2008)

    Google Scholar 

  26. Koch, I., Reisig, W., Schreiber, F.: Modeling in Systems Biology: The Petri Net Approach, vol. 16. Springer Science & Business Media, London (2010)

    Google Scholar 

  27. Lazarides, E.: Intermediate filaments as mechanical integrators of cellular space. Nature 283(5744), 249–256 (1980)

    Article  Google Scholar 

  28. Mizera, A., Czeizler, E., Petre, I.: Self-assembly models of variable resolution. In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIV. LNCS, vol. 7625, pp. 181–203. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Murphy, E., Danos, V., Feret, J., Krivine, J., Harmer, R.: Rule Based Modelling and Model Refinement, Elem. Comput. Syst. Biol. pp. 83–114. Wiley Book Series on Bioinformatics, John Wiley & Sons, Inc. (2010)

    Google Scholar 

  30. Nicolis, G., Prigogine, I.: Self-Organizationin Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York (1977)

    Google Scholar 

  31. Ovaska, K., et al.: Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med. 2(9), 65+, 2010. http://dx.doi.org/10.1186/gm186

  32. Petre, I., Mizera, A., Hyder, C., Meinander, A., Mikhailov, A., Morimoto, R., Sistonen, L., Eriksson, J., Back, R.: A simple mass-action model for the eukaryotic heat shock response and its mathematical validation. Natural Comput. 10(1), 595–612 (2011)

    Article  MathSciNet  Google Scholar 

  33. Pistore, M., Sangiorgi, D.: A partition refinement algorithm for the \(\pi \)-calculus. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 38–49. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  34. Rudy, Y.: From genome to physiome: integrative models of cardiac excitation. Ann. Biomed. Eng. 28(8), 945–950 (2000)

    Article  Google Scholar 

  35. Schliwa, M.: The Cytoskeleton, Cell Biology Monographs, vol. 13. Springer-Verlag, Vienna, Austria (1986)

    Google Scholar 

  36. Shokri, F.: Structref (2015). https://github.com/fshokri/StructRef

  37. Suzuki, I., Murata, T.: A method for stepwise refinement and abstraction of petri nets. J. Comput. Syst. Sci. 27(1), 51–76 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Academy of Finland under project 267915. Bogdan Iancu’s current affiliation is at Department of Mathematics and Statistics, University of Turku, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Petre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Azimi, S. et al. (2015). An Excursion Through Quantitative Model Refinement. In: Rozenberg, G., Salomaa, A., Sempere, J., Zandron, C. (eds) Membrane Computing. CMC 2015. Lecture Notes in Computer Science(), vol 9504. Springer, Cham. https://doi.org/10.1007/978-3-319-28475-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28475-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28474-3

  • Online ISBN: 978-3-319-28475-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics