Skip to main content

Genetic and Epigenetic Determinants in Tumor Initiation and Progression of Glioblastoma

  • Chapter
  • First Online:
  • 773 Accesses

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The treatment options for patients with glioblastoma are limited, thus much studies have been conducted to elucidate the mechanisms underlining gliomagenesis. The recent genome-wide sequencing and large-scale epigenetic profiling studies have generated crucial new data into the interplay between genetic and epigenetic alterations in glioblastoma, leading to a better understanding of the genetics and epigenetics determinants in the different glioma subtypes and malignancy grades, thus allowing a better prediction of the individual patient sensitivity to the standard therapies. In this chapter the major studies dealing with genetic and epigenetics modification in gliomas, leading to tumor progression, invasion, and insensitivity to chemotherapy and radiotherapy are analyzed. The knowledge generated by these studies will allow patient personalized therapies which will improve the effectiveness of the therapeutic scheme by inhibiting specific signaling pathways allowing to overcome the problem of drug/radio-resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN. Int J Cancer. 2010;127(12):2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Jacob G, Dinca EB. Current data and strategy in glioblastoma multiforme. J Med Life. 2009;2(4):386–93.

    Google Scholar 

  3. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61(3):215–25.

    Article  PubMed  Google Scholar 

  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.

    Article  CAS  PubMed  Google Scholar 

  6. Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci. 2011;12(9):495–508.

    Article  CAS  PubMed  Google Scholar 

  7. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503.

    Article  PubMed  Google Scholar 

  8. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. Neurol Clin. 2007;25(4):867–90 [Review].

    Article  PubMed  Google Scholar 

  9. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westermark B. Glioblastoma—a moving target. Ups J Med Sci. 2012;117(2):251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Central Brain Tumor Registry of the United States. Statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2007. Hinsdale: Central Brain Tumor Registry of the United States: 2011.

    Google Scholar 

  12. Mrugala MM. Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med. 2013;15(83):221–30.

    PubMed  Google Scholar 

  13. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012;131(12):1877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  14. TCGA (The Cancer Genome Atlas Research Network). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Google Scholar 

  15. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149(1):36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol. 1999;1(1):44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  20. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Google Scholar 

  21. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  23. Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: Tying it all together. Int J Biochem Cell Biol. 2009;41(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson KM, Weiss GJ. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008;7(12):3655–60.

    Article  CAS  PubMed  Google Scholar 

  25. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  CAS  PubMed  Google Scholar 

  26. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007;8(6):413–23.

    Article  CAS  PubMed  Google Scholar 

  27. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  28. Fan YC, Mei PJ, Chen C, Miao FA, Zhang H, Li ZL. MiR-29c inhibits glioma cell proliferation, migration, invasion and angiogenesis. J Neurooncol. 2013;115(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  29. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.

    Article  CAS  PubMed  Google Scholar 

  30. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22 [Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Natsume A, Kondo Y, Ito M, Motomura K, Wakabayashi T, Yoshida J. Epigenetic aberrations and therapeutic implications in gliomas. Cancer Sci. 2010;101(6):1331–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kondo Y, Katsushima K, Ohka F, Natsume A, Shinjo K. Epigenetic dysregulation in glioma. Cancer Sci. 2014;105(4):363–9 [Review].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29(34):4482–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Esteller M. Cancer epigenomics: DNA methylomes and histone modification maps. Nat Rev Genet. 2007;8(4):286–98.

    Article  CAS  PubMed  Google Scholar 

  37. Suvà ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 2009;69:9211–8.

    Article  PubMed  Google Scholar 

  38. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, Zhang X, et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A. 2008;105(35):12979–84.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F, Simmer F, et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 2012;22(6):1128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003;23(1):206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.

    Article  CAS  PubMed  Google Scholar 

  43. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histoneH3 alterations in pediatric diffuse intrinsic pontine gliomas and nonbrainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell. 2013;24(5):660–72.

    Article  CAS  PubMed  Google Scholar 

  45. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M, et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood. 2012;120(5):1107–17.

    Article  CAS  PubMed  Google Scholar 

  47. Mallen-St Clair J, Soydaner-Azeloglu R, Lee KE, Taylor L, Livanos A, Pylayeva-Gupta Y, et al. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev. 2012;26(5):439–44.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci U S A. 2012;109(13):5028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37.

    Article  CAS  PubMed  Google Scholar 

  51. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(34):474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol Cancer Res. 2006;4(9):601–5.

    Article  CAS  PubMed  Google Scholar 

  54. Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang WT, Nelson PT, et al. Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res. 2004;10:8177–84.

    Article  CAS  PubMed  Google Scholar 

  55. Singh SK, Vartanian A, Burrell K, Zadeh G. A microRNA link to glioblastoma heterogeneity. Cancers. 2012;4(3):846–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, et al. Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res. 2004;64:1886–92.

    Article  CAS  PubMed  Google Scholar 

  57. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factor in cancer stem cells. Br J Cancer. 2010;102(5):789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brat DJ, Kaur B, Van Meir EG. Genetic modulation of Hypoxia induced gene expression and angiogenesis: relevance to brain tumours. Front Biosci. 2003;8:d100–16.

    Article  CAS  PubMed  Google Scholar 

  59. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8(20):3274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seidel S, Garvalov BK, Wirta V, Von Stechow L, Schanzer A, Meletis K, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain. 2010;133:983–95.

    Article  PubMed  Google Scholar 

  61. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  62. Thirlwell C, Schulz LKE, Dibra HK, Beck S. Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy. Clin Epigenetics. 2011;3:1–9.

    Article  Google Scholar 

  63. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin Q, Cong X, Yun Z. Differential hypoxic regulation of hypoxia-inducible factors 1α and 2α. Mol Cancer Res. 2011;9(6):757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tennant DA, Duràn RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009;30(8):1269–80.

    Article  CAS  PubMed  Google Scholar 

  66. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3.

    Article  CAS  PubMed  Google Scholar 

  67. Watson JA, Watson CJ, McCrohan AM, Woodfine K, Tosetto M, McDaid J, et al. Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum Mol Genet. 2009;18:3594–604.

    Article  CAS  PubMed  Google Scholar 

  68. Watson JA, Watson CJ, McCann A, Baugh J. Epigenetics, the epicenter of the hypoxic response. Epigenetics. 2010;5(4):293–6.

    Article  CAS  PubMed  Google Scholar 

  69. Pal A, Srivastava T, Sharma MK, Mehndiratta M, Das P, Sinha S, et al. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia. J Cell Mol Med. 2010;14(11):2646–54.

    Article  CAS  PubMed  Google Scholar 

  70. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A. 2009;106(11):4260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cortez MA, Ivan C, Zhou P, Wu X, Ivan M, Calin GA. MicroRNAs in cancer: from bench to bedside. Adv Cancer Res. 2010;108:113–57.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res. 2008;640(1–2):174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shahrzad S, Bertrand K, Minhas K, Coomber BL. Induction of DNA hypomethylation by tumor hypoxia. Epigenetics. 2007;2(2):119–25.

    Article  PubMed  Google Scholar 

  74. Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE, et al. Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ. 2012;19:428–39.

    Article  CAS  PubMed  Google Scholar 

  75. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem. 2008;283(52):36542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wellmann S, Bettkober M, Zelmer A, Seeger K, Faigle M, Eltzschig HK, et al. Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem Biophys Res Commun. 2008;372(4):892–7.

    Article  CAS  PubMed  Google Scholar 

  77. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, et al. Regulation of Jumonjidomain-containing histone demethylases by hypoxiainducible factor (HIF)-1alpha. Biochem J. 2008;416(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  78. Yang J, Ledaki I, Turley H, Gatter KC, Montero JCM, Li JL. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y Acad Sci. 2009;1177:185–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cimini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cimini, A. et al. (2016). Genetic and Epigenetic Determinants in Tumor Initiation and Progression of Glioblastoma. In: Pirtoli, L., Gravina, G., Giordano, A. (eds) Radiobiology of Glioblastoma. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-28305-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28305-0_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-28303-6

  • Online ISBN: 978-3-319-28305-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics