Skip to main content

The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research

  • Chapter
  • First Online:
Gene Expression Systems in Fungi: Advancements and Applications

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

One major focus in fungal biotechnological research is the elucidation of plant biomass degradation. Filamentous fungi have the capacity to produce large amounts of enzymes for lignocellulose deconstruction that release fermentable sugars from the plant cell walls. The most commonly used fungi for this purpose are Trichoderma reesei and several Aspergilli. However, the saprophytic ascomycete Neurospora crassa has already made undeniable contributions to fundamental science in the past, and due to the availability of versatile tools for genetics, biochemistry and molecular biology, it is well suited to be applied also to industrially relevant questions. In this review, we try to highlight not only the capacity of Neurospora crassa as a biomass degrader and how recent advances in genomic, proteomic and transcriptomic studies promote the understanding of the underlying processes, but also to introduce the biotechnological potential of Neurospora crassa itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014;4(1):117–39. doi:10.3390/biom4010117.

    Article  CAS  Google Scholar 

  • Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, et al. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A. 2014;111(17):6287–92. doi:10.1073/pnas.1323629111.

    Article  CAS  Google Scholar 

  • Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics. 2013;14(4):230–49. doi:10.2174/1389202911314040002.

    Article  CAS  Google Scholar 

  • Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis. 1997;18:533–7. doi:10.1002/elps.1150180333.

    Article  CAS  Google Scholar 

  • Andre B. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast. 1995;11(16):1575–611. doi:10.1002/yea.320111605.

    Article  CAS  Google Scholar 

  • Angel Siles Lopez J, Li Q, Thompson IP. Biorefinery of waste orange peel. Crit Rev Biotechnol. 2010;30(1):63–9. doi:10.3109/07388550903425201.

    Article  CAS  Google Scholar 

  • Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 2005;29(4):719–39. doi:10.1016/j.femsre.2004.11.006.

    Article  CAS  Google Scholar 

  • Arratia-Quijada J, Sanchez O, Scazzocchio C, Aguirre J. FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell. 2012;11(9):1132–42. doi:10.1128/EC.00101-12.

    Article  CAS  Google Scholar 

  • Beadle GW, Tatum EL. Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A. 1941;27(11):499–506.

    Article  CAS  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc. 2012;134(2):890–2. doi:10.1021/ja210657t.

    Article  CAS  Google Scholar 

  • Benoit I, Coutinho PM, Schols HA, Gerlach JP, Henrissat B, de Vries RP. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics. 2012;13:321. doi:10.1186/1471-2164-13-321.

    Article  CAS  Google Scholar 

  • Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR. A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol. 2014a;91(2):275–99. doi:10.1111/mmi.12459.

    Article  CAS  Google Scholar 

  • Benz JP, Protzko RJ, Andrich JM, Bauer S, Dueber JE, Somerville CR. Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnol Biofuels. 2014b;7(1):20. doi:10.1186/1754-6834-7-20.

    Article  CAS  Google Scholar 

  • Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, et al. Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol. 2013;79(2):488–96. doi:10.1128/aem.02942-12.

    Article  CAS  Google Scholar 

  • Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels. 2013;6(1):127. doi:10.1186/1754-6834-6-127.

    Article  CAS  Google Scholar 

  • Bistis GN, Perkins DD, Read N. Cell types of Neurospora crassa. Fungal Genet Newsl. 2003;50:17–9.

    Google Scholar 

  • Bonnin E, Garnier C, Ralet MC. Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Appl Microbiol Biotechnol. 2014;98(2):519–32. doi:10.1007/s00253-013-5388-6.

    Article  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, et al. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev. 2004;68(1):1–108. doi:10.1128/mmbr.68.1.1-108.2004.

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res. 2009;344(14):1879–900. doi:10.1016/j.carres.2009.05.021.

    Article  CAS  Google Scholar 

  • Cai P, Gu R, Wang B, Li J, Wan L, Tian C, et al. Evidence of a Critical Role for Cellodextrin Transporte 2 (CDT-2) in Both Cellulose and Hemicellulose Degradation and Utilization in Neurospora crassa. PLoS One. 2014;9(2), e89330. doi:10.1371/journal.pone.0089330.

    Article  CAS  Google Scholar 

  • Cai P, Wang B, Ji J, Jiang Y, Wan L, Tian C, et al. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa. J Biol Chem. 2015;290(2):788–96. doi:10.1074/jbc.M114.609875.

    Article  CAS  Google Scholar 

  • Canteri-Schemin MH, Fertonani HCR, Waszczynskyj N, Wosiacki G. Extraction of pectin from apple pomace. Braz Arch Biol Technol. 2005;48:259–66. doi:10.1590/S1516-89132005000200013.

    Article  CAS  Google Scholar 

  • Carroll A, Somerville C. Cellulosic biofuels. Annu Rev Plant Biol. 2009;60:165–82. doi:10.1146/annurev.arplant.043008.092125.

    Article  CAS  Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A. 1979;76(10):5259–63.

    Article  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14(4):438–43. doi:10.1016/S0958-1669(03)00099-5.

    Article  CAS  Google Scholar 

  • Chiang C, Knight SG. Metabolism of d-xylose by moulds. Nature. 1960;188:79–81. doi:10.1038/188079a0.

    Article  CAS  Google Scholar 

  • Chikamatsu G, Shirai K, Kato M, Kobayashi T, Tsukagoshi N. Structure and expression properties of the endo-beta-1,4-glucanase A gene from the filamentous fungus Aspergillus nidulans. FEMS Microbiol Lett. 1999;175(2):239–45. doi:10.1016/S0378-1097(99)00201-3.

    CAS  Google Scholar 

  • Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, Borkovich KA, et al. High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol. 2010;638:33–40. doi:10.1007/978-1-60761-611-5_3.

    Article  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A. 2006;103(27):10352–7. doi:10.1073/pnas.0601456103.

    Article  CAS  Google Scholar 

  • Conesa A, Punt PJ, van Luijk N, van den Hondel CAMJJ. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol. 2001;33(3):155–71. doi:10.1006/fgbi.2001.1276.

    Article  CAS  Google Scholar 

  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A. 2012;109(19):7397–402. doi:10.1073/pnas.1200785109.

    Article  CAS  Google Scholar 

  • Coradetti ST, Xiong Y, Glass NL. Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen. 2013;2(4):595–609. doi:10.1002/mbo3.94.

    Article  CAS  Google Scholar 

  • Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, et al. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol. 2009;46(1):S161–9. doi:10.1016/j.fgb.2008.07.020.

    Article  CAS  Google Scholar 

  • Cox B, Kislinger T, Emili A. Integrating gene and protein expression data: pattern analysis and profile mining. Methods. 2005;35:303–14. doi:10.1016/j.ymeth.2004.08.021.

    Article  CAS  Google Scholar 

  • Cullen D. The genome of an industrial workhorse. Nat Biotechnol. 2007;25(2):189–90. doi:10.1038/nbt0207-189.

    Article  CAS  Google Scholar 

  • Cupertino FB, Virgilio S, Freitas FZ, Candido Tde S, Bertolini MC. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator. Fungal Genet Biol. 2015;77:82–94. doi:10.1016/j.fgb.2015.03.011.

    Article  CAS  Google Scholar 

  • Davis RH. Neurospora: contributions of a model organism. Oxford: Oxford University Press; 2000.

    Google Scholar 

  • Davis RH, Perkins DD. Neurospora: a model of model microbes. Nat Rev Genet. 2002;3(5):397–403. doi:10.1038/nrg797.

    Article  CAS  Google Scholar 

  • de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, et al. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels. 2011;4:40. doi:10.1186/1754-6834-4-40.

    Article  CAS  Google Scholar 

  • de Souza WR, Maitan-Alfenas GP, de Gouvea PF, Brown NA, Savoldi M, Battaglia E, et al. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol. 2013;60:29–45. doi:10.1016/j.fgb.2013.07.007.

    Article  CAS  Google Scholar 

  • de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65(4):497–522. doi:10.1128/mmbr.65.4.497-522.2001.

    Article  Google Scholar 

  • Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, et al. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet. 2012;8(8), e1002875. doi:10.1371/journal.pgen.1002875.

    Article  CAS  Google Scholar 

  • Demain AL. Biosolutions to the energy problem. J Ind Microbiol Biotechnol. 2009;36(3):319–32. doi:10.1007/s10295-008-0521-8.

    Article  CAS  Google Scholar 

  • Dementhon K, Iyer G, Glass NL. VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa. Eukaryot Cell. 2006;5:2161–73. doi:10.1128/EC.00253-06.

    Article  CAS  Google Scholar 

  • Dimarogona M, Topakas E, Christakopoulos P. Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J. 2012;2, e201209015. doi:10.5936/csbj.201209015.

    Article  Google Scholar 

  • Dogaris I, Mamma D, Kekos D. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations? Appl Microbiol Biotechnol. 2013;97(4):1457–73. doi:10.1007/s00253-012-4655-2.

    Article  CAS  Google Scholar 

  • Doran JB, Cripe J, Sutton M, Foster B. Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol. 2000;84–86:141–52. doi:10.1385/ABAB:84-86:1-9:141.

    Article  Google Scholar 

  • Dos Reis TF, Menino JF, Bom VL, Brown NA, Colabardini AC, Savoldi M, et al. Identification of glucose transporters in Aspergillus nidulans. PLoS One. 2013;8(11), e81412. doi:10.1371/journal.pone.0081412.

    Article  CAS  Google Scholar 

  • Dowzer CE, Kelly JM. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol. 1991;11:5701–9. doi:10.1128/MCB.11.11.5701.

    Article  CAS  Google Scholar 

  • Du J, Li S, Zhao H. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol Biosyst. 2010;6(11):2150–6. doi:10.1039/c0mb00007h.

    Article  CAS  Google Scholar 

  • Dunlap JC, Loros JJ. How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol. 2006;9(6):579–87. doi:10.1016/j.mib.2006.10.008.

    Article  CAS  Google Scholar 

  • Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, et al. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet. 2007;57:49–96. doi:10.1016/s0065-2660(06)57002-6.

    Article  CAS  Google Scholar 

  • Ebbole DJ. Carbon catabolite repression of gene expression and conidiation in Neurospora crassa. Fungal Genet Biol. 1998;25(1):15–21. doi:10.1006/fgbi.1998.1088.

    Article  CAS  Google Scholar 

  • Economou CN, Aggelis G, Pavlou S, Vayenas DV. Single cell oil production from rice hulls hydrolysate. Bioresour Technol. 2011;102(20):9737–42. doi:10.1016/j.biortech.2011.08.025.

    Article  CAS  Google Scholar 

  • Edwards MC, Doran-Peterson J. Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol. 2012;95(3):565–75. doi:10.1007/s00253-012-4173-2.

    Article  CAS  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, et al. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem. 2014;289(52):35929–38. doi:10.1074/jbc.M114.602227.

    Article  CAS  Google Scholar 

  • Fan F, Ma G, Li J, Liu Q, Benz JP, Tian C, et al. Genome-wide analysis of the endoplasmic reticulum stress response during lignocellulase production in Neurospora crassa. Biotechnol Biofuels. 2015;8:66. doi:10.1186/s13068-015-0248-5.

    Article  CAS  Google Scholar 

  • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc Natl Acad Sci U S A. 2014;111(14):5159–64. doi:10.1073/pnas.1323464111.

    Article  CAS  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol. 2006;6:99. doi:10.1186/1471-2148-6-99.

    Article  CAS  Google Scholar 

  • Fleissner A, Simonin AR, Glass NL. Cell fusion in the filamentous fungus, Neurospora crassa. Methods Mol Biol. 2008;475:21–38. doi:10.1007/978-1-59745-250-2_2.

    Article  Google Scholar 

  • Flipphi M, Felenbok B. The onset of carbon catabolic repression and interplay between specific induction and carbon catabolite repression in Aspergillus nidulans. In: Brambl R, Marzluf G, editors. Biochemistry and molecular biology, The mycota, vol. 3. Berlin: Springer; 2004. p. 403–20.

    Chapter  Google Scholar 

  • Fox JM, Levine SE, Blanch HW, Clark DS. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization. Biotechnol J. 2012;7(3):361–73. doi:10.1002/biot.201100209.

    Article  CAS  Google Scholar 

  • Freitag M, Selker EU. Controlling DNA methylation: many roads to one modification. Curr Opin Genet Dev. 2005;15(2):191–9. doi:10.1016/j.gde.2005.02.003.

    Article  CAS  Google Scholar 

  • Frey-Wyssling A. The Fine Structure of Cellulose Microfibrils. Science. 1954;119(3081):80–2. doi:10.1126/science.119.3081.80.

    Article  CAS  Google Scholar 

  • Galagan JE, Selker EU. RIP: the evolutionary cost of genome defense. Trends Genet. 2004;20(9):417–23. doi:10.1016/j.tig.2004.07.007.

    Article  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422(6934):859–68. doi:10.1038/nature01554.

    Article  CAS  Google Scholar 

  • Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. Cellodextrin transport in yeast for improved biofuel production. Science. 2010;330(6000):84–6. doi:10.1126/science.1192838.

    Article  CAS  Google Scholar 

  • Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998;62:334–61.

    CAS  Google Scholar 

  • Gielkens MMC, Dekkers E, Visser J, de Graaff LH. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-Xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Envir Microbiol. 1999;65:4340–5.

    CAS  Google Scholar 

  • Glass NL, Schmoll M, Cate JH, Coradetti S. Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol. 2013;67:477–98. doi:10.1146/annurev-micro-092611-150044.

    Article  CAS  Google Scholar 

  • Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao ZK. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels. 2013;6(1):36. doi:10.1186/1754-6834-6-36.

    Article  CAS  Google Scholar 

  • Gow NAR. Tip Growth and Polarity. In: Gow NR, Gadd G, editors. The Growing Fungus. Netherlands: Springer; 1995. p. 277–99.

    Chapter  Google Scholar 

  • Griffiths AJF, Collins RA, Nargang FE. Mitochondrial genetics of Neurospora. In: Kück U, editor. Genetics and biotechnology, The mycota, vol. 2. Berlin: Springer; 1995. p. 93–105.

    Chapter  Google Scholar 

  • Gruben BS, Zhou M, Wiebenga A, Ballering J, Overkamp KM, Punt PJ, et al. Aspergillus niger RhaR, a regulator involved in l-rhamnose release and catabolism. Appl Microbiol Biotechnol. 2014;98(12):5531–40. doi:10.1007/s00253-014-5607-9.

    CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720–30.

    Article  CAS  Google Scholar 

  • Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 2011a;108(2):504–9. doi:10.1073/pnas.1010456108.

    Article  CAS  Google Scholar 

  • Ha SJ, Wei Q, Kim SR, Galazka JM, Cate JH, Jin YS. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol. 2011b;77(16):5822–5. doi:10.1128/aem.05228-11.

    Article  CAS  Google Scholar 

  • Ha S-J, Galazka JM, Joong Oh E, Kordić V, Kim H, Jin Y-S, et al. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng. 2013;15:134–43. doi:10.1016/j.ymben.2012.11.005.

    Article  CAS  Google Scholar 

  • Harholt J, Suttangkakul A, Vibe SH. Biosynthesis of pectin. Plant Physiol. 2010;153(2):384–95. doi:10.1104/pp.110.156588.

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 2010;49(15):3305–16. doi:10.1021/bi100009p.

    Article  CAS  Google Scholar 

  • Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol. 2014;19:162–70. doi:10.1016/j.cbpa.2014.02.015.

    Article  CAS  Google Scholar 

  • Hasper AA, Visser J, de Graaff LH. The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression. Mol Microbiol. 2000;36:193–200. doi:10.1046/j.1365-2958.2000.01843.x.

    Article  CAS  Google Scholar 

  • Hegde PS, White IR, Debouck C. Interplay of transcriptomics and proteomics. Curr Opin Biotechnol. 2003;14:647–51. doi:10.1016/j.copbio.2003.10.006.

    Article  CAS  Google Scholar 

  • Hildebrand A, Kasuga T, Fan Z. Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition. PLoS One. 2015a;10(4), e0123006. doi:10.1371/journal.pone.0123006.

    Article  CAS  Google Scholar 

  • Hildebrand A, Szewczyk E, Lin H, Kasuga T, Fan Z. Engineering Neurospora crassa for improved cellobiose and cellobionate production. Appl Environ Microbiol. 2015b;81(2):597–603. doi:10.1128/aem.02885-14.

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315(5813):804–7. doi:10.1126/science.1137016.

    Article  CAS  Google Scholar 

  • Horowitz NH. The origins of molecular genetics: one gene, one enzyme. Bioessays. 1985;3(1):37–40. doi:10.1002/bies.950030110.

    Article  CAS  Google Scholar 

  • Huisjes EH, de Hulster E, van Dam JC, Pronk JT, van Maris AJA. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl Environ Microbiol. 2012a;78:5052–9. doi:10.1128/AEM.07617-11.

    Article  CAS  Google Scholar 

  • Huisjes EH, Luttik MA, Almering MJ, Bisschops MM, Dang DH, Kleerebezem M, et al. Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism. J Biotechnol. 2012b;162(2–3):303–10. doi:10.1016/j.jbiotec.2012.10.003.

    Article  CAS  Google Scholar 

  • Ilmén M, Thrane C, Penttilä M. The glucose repressor gene cre1 of Trichoderma: Isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet. 1996;251:451–60. doi:10.1007/BF02172374.

    Google Scholar 

  • Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, et al. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem. 2014;289(5):2632–42. doi:10.1074/jbc.M113.530196.

    Article  CAS  Google Scholar 

  • Ivanova C, Baath JA, Seiboth B, Kubicek CP. Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One. 2013;8(5), e62631. doi:10.1371/journal.pone.0062631.

    Article  CAS  Google Scholar 

  • Jin M, Gunawan C, Balan V, Yu X, Dale BE. Continuous SSCF of AFEX pretreated corn stover for enhanced ethanol productivity using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Biotechnol Bioeng. 2013;110(5):1302–11. doi:10.1002/bit.24797.

    Article  CAS  Google Scholar 

  • Kelly JM. The regulation of carbon metabolism in filamentous fungi. In: Brambl R, Marzluf G, editors. Biochemistry and molecular biology, The mycota, vol. 3. Berlin: Springer; 2004. p. 385–401.

    Chapter  Google Scholar 

  • Kennedy M, List D, Lu Y, Foo LY, Newman RH, Sims IM, et al. Apple pomace and products derived from apple pomace: uses, composition and analysis. In: Linskens H, Jackson J, editors. Analysis of plant waste materials, Modern methods of plant analysis, vol. 20. Berlin: Springer; 1999. p. 75–119.

    Chapter  Google Scholar 

  • Kiely DE, Chen L, Lin T-H. Synthetic polyhydroxypolyamides from galactaric, xylaric, d-glucaric, and d-mannaric acids and alkylenediamine monomers—some comparisons. J Polym Sci Part A Polym Chem. 2000;38(3):594–603. doi:10.1002/(SICI)1099-0518(20000201)38:3<594::AID-POLA24>3.0.CO;2-#.

    Article  CAS  Google Scholar 

  • Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv. 2013;31(6):851–61. doi:10.1016/j.biotechadv.2013.03.004.

    Article  CAS  Google Scholar 

  • Kim H, Lee WH, Galazka JM, Cate JH, Jin YS. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl Microbiol Biotechnol. 2014;98(3):1087–94. doi:10.1007/s00253-013-5339-2.

    Article  CAS  Google Scholar 

  • Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels. 2012;5(1):79. doi:10.1186/1754-6834-5-79.

    Article  CAS  Google Scholar 

  • Kötter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38(6):776–83. doi:10.1007/BF00167144.

    Article  Google Scholar 

  • Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function. Bioessays. 2011;33(11):870–9. doi:10.1002/bies.201100100.

    Article  CAS  Google Scholar 

  • Kubicek CP. Fungi and lignocellulosic biomass. Oxford: Wiley; 2012.

    Book  Google Scholar 

  • Kubicek CP. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol. 2013;163(2):133–42. doi:10.1016/j.jbiotec.2012.05.020.

    Article  CAS  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels. 2009;2:19. doi:10.1186/1754-6834-2-19.

    Article  CAS  Google Scholar 

  • Kuo H-C, Hui S, Choi J, Asiegbu FO, Valkonen JPT, Lee Y-H. Secret lifestyles of Neurospora crassa. Sci Rep. 2014;4:5135. doi:10.1038/srep05135.

    Article  CAS  Google Scholar 

  • Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol. 2011;77(19):7007–15. doi:10.1128/aem.05815-11.

    Article  CAS  Google Scholar 

  • Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK, Dueber JE. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng. 2014;25:20–9. doi:10.1016/j.ymben.2014.06.002.

    Article  CAS  Google Scholar 

  • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:16151–6. doi:10.1073/pnas.0905848106.

    Article  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41. doi:10.1186/1754-6834-6-41.

    Article  CAS  Google Scholar 

  • Li S, Du J, Sun J, Galazka JM, Glass NL, Cate JH, et al. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a beta-glucosidase in Saccharomyces cerevisiae. Mol Biosyst. 2010;6(11):2129–32. doi:10.1039/c0mb00063a.

    Article  CAS  Google Scholar 

  • Li X, Beeson WT, Phillips CM, Marletta MA, Cate JH. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure. 2012;20(6):1051–61. doi:10.1016/j.str.2012.04.002.

    Article  CAS  Google Scholar 

  • Li S, Ha SJ, Kim HJ, Galazka JM, Cate JH, Jin YS, et al. Investigation of the functional role of aldose 1-epimerase in engineered cellobiose utilization. J Biotechnol. 2013;168(1):1–6. doi:10.1016/j.jbiotec.2013.08.003.

    Article  CAS  Google Scholar 

  • Li J, Lin L, Li H, Tian C, Ma Y. Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides d-glucose, d-xylose and l-arabinose. Biotechnol Biofuels. 2014a;7(1):31. doi:10.1186/1754-6834-7-31.

    Article  Google Scholar 

  • Li Q, Ng W, Wu J. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microb Cell Fact. 2014b;13(1):157. doi:10.1186/s12934-014-0157-5.

    Article  CAS  Google Scholar 

  • Li X, Yu VY, Lin Y, Chomvong K, Estrela R, Liang JM, et al. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels. Elife. 2015a;4, e05896. doi:10.1101/007807.

    Google Scholar 

  • Li J, Xu J, Cai P, Wang B, Ma Y, Benz JP, et al. Functional analysis of two l-Arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae. Appl Environ Microbiol. 2015b;81(12):4062–70. doi:10.1128/AEM.00165-15.

    Article  CAS  Google Scholar 

  • Lian J, Li Y, HamediRad M, Zhao H. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Biotechnol Bioeng. 2014;111(8):1521–31. doi:10.1002/bit.25214.

    Article  CAS  Google Scholar 

  • Linden H, Ballario P, Macino G. Blue light regulation in Neurospora crassa. Fungal Genet Biol. 1997;22(3):141–50. doi:10.1006/fgbi.1997.1013.

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490–5. doi:10.1093/nar/gkt1178.

    Article  CAS  Google Scholar 

  • Loros JJ, Dunlap JC. Circadian rhythms, photobiology and functional genomics in Neurospora. In: Brown AP, editor. Fungal genomics, The mycota, vol. 13. Berlin: Springer; 2006. p. 53–74.

    Chapter  Google Scholar 

  • Mabee WE, McFarlane PN, Saddler JN. Biomass availability for lignocellulosic ethanol production. Biomass Bioenergy. 2011;35:4519–29. doi:10.1016/j.biombioe.2011.06.026.

    Article  Google Scholar 

  • Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP. Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol. 1996;21:1273–81. doi:10.1046/j.1365-2958.1996.00094.x.

    Article  CAS  Google Scholar 

  • Mach-Aigner AR, Pucher ME, Mach RL. D-Xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol. 2010;76(6):1770–6. doi:10.1128/aem.02746-09.

    Article  CAS  Google Scholar 

  • Madi L, McBride SA, Bailey LA, Ebbole DJ. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics. 1997;146(2):499–508.

    CAS  Google Scholar 

  • Mandels M, Reese ET. Induction of cellulase in fungi by cellobiose. J Bacteriol. 1960;79:816–26.

    CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26(5):553–60. doi:10.1038/nbt1403.

    Article  CAS  Google Scholar 

  • Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, et al. A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol. 2002;35(2):157–69. doi:10.1006/fgbi.2001.1321.

    Article  CAS  Google Scholar 

  • McCluskey K. The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol. 2003;52:245–62.

    Article  Google Scholar 

  • McCluskey K. Variation in mitochondrial genome primary sequence among whole-genome-sequenced strains of Neurospora crassa. IMA Fungus. 2012;3(1):93–8. doi:10.5598/imafungus.2012.03.01.10.

    Article  Google Scholar 

  • McCluskey K, Wiest A, Plamann M. The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. J Biosci. 2010;35(1):119–26. doi:10.1007/s12038-010-0014-6.

    Article  CAS  Google Scholar 

  • McPherson PA. From fungus to pharmaceuticals—the chemistry of statins. Mini Rev Med Chem. 2012;12(12):1250–60. doi:10.2174/138955712802762103.

    Article  CAS  Google Scholar 

  • Metzenberg RL, Glass NL. Mating type and mating strategies in Neurospora. Bioessays. 1990;12(2):53–9. doi:10.1002/bies.950120202.

    Article  CAS  Google Scholar 

  • Mishra NC, Tatum EL. Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proc Natl Acad Sci U S A. 1973;70(12):3875–9.

    Article  CAS  Google Scholar 

  • Mitchell MB. Aberrant recombination of pyridoxine mutants of Neurospora. Proc Natl Acad Sci U S A. 1955;41(4):215–20.

    Article  CAS  Google Scholar 

  • Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–77. doi:10.1016/j.pbi.2008.03.006.

    Article  CAS  Google Scholar 

  • Morgenstern I, Powlowski J, Tsang A. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief Funct Genomics. 2014;13(6):471–81. doi:10.1093/bfgp/elu032.

    Article  Google Scholar 

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol. 2009;75:4853–60. doi:10.1128/AEM.00282-09.

    Article  CAS  Google Scholar 

  • Nehlin JO, Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 1990;9:2891–8.

    CAS  Google Scholar 

  • Nelissen B, De Wachter R, Goffeau A. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol Rev. 1997;21(2):113–34.

    Article  CAS  Google Scholar 

  • Nelson MA. Mating systems in ascomycetes: a romp in the sac. Trends Genet. 1996;12(2):69–74. doi:10.1016/0168-9525(96)81403-X.

    Article  CAS  Google Scholar 

  • Nie L, Wu G, Culley DE, Scholten JCM, Zhang W. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol. 2007;27:63–75. doi:10.1080/07388550701334212.

    Article  CAS  Google Scholar 

  • Nielsen J. Production of biopharmaceutical proteins by yeast: advances through metabolic engineering. Bioengineered. 2013;4(4):207–11. doi:10.4161/bioe.22856.

    Article  Google Scholar 

  • Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, et al. A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol. 2012;49:388–97. doi:10.1016/j.fgb.2012.02.009.

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol. 1996;18:312–31. doi:10.1016/0141-0229(95)00157-3.

    Article  CAS  Google Scholar 

  • Orejas M, MacCabe AP, Perez Gonzalez JA, Kumar S, Ramon D. Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol. 1999;31:177–84. doi:10.1046/j.1365-2958.1999.01157.x.

    Article  CAS  Google Scholar 

  • Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW, Brem RB, et al. Genome wide association identifies novel loci involved in fungal communication. PLoS Genet. 2013;9(8), e1003669. doi:10.1371/journal.pgen.1003669.

    Article  CAS  Google Scholar 

  • Pandit A, Maheshwari R. Life-history of Neurospora intermedia in a sugar cane field. J Biosci. 1996;21(1):57–79. doi:10.1007/BF02716813.

    Article  Google Scholar 

  • Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62(1):1–34.

    CAS  Google Scholar 

  • Pardo E, Orejas M. The Aspergillus nidulans Zn(II)2Cys6 transcription factor AN5673/RhaR mediates l-rhamnose utilization and the production of alpha- l-rhamnosidases. Microb Cell Fact. 2014;13:161. doi:10.1186/s12934-014-0161-9.

    Google Scholar 

  • Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008;54(4):559–68. doi:10.1111/j.1365-313X.2008.03463.x.

    Article  CAS  Google Scholar 

  • Payen A. (rapporteur) Extrait d’un rapport adresse a M. Le Marechal Duc de Dalmatie, Ministre de la Guerre, President du Conseil, sur une alteration extraordinaire du pain de munition. Ann Chim Phys 3 Ser. 1843;9:5–21.

    Google Scholar 

  • Perkins DD, Turner BC. Neurospora from natural populations: toward the population biology of a haploid eukaryote. Exp Mycol. 1988;12(2):91–131. doi:10.1016/0147-5975(88)90001-1.

    Article  Google Scholar 

  • Perkins DD, Turner BC, Barry EG. Strains of Neurospora collected from nature. Evolution. 1976;30(2):281–313. doi:10.2307/2407702.

    Article  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol. 2011;6(12):1399–406. doi:10.1021/cb200351y.

    Article  CAS  Google Scholar 

  • Popper ZA, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62:567–90. doi:10.1146/annurev-arplant-042110-103809.

    Article  CAS  Google Scholar 

  • Porciuncula JO, Furukawa T, Mori K, Shida Y, Hirakawa H, Tashiro K, et al. Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci Biotechnol Biochem. 2013;77:534–43. doi:10.1271/bbb.120794.

    Article  CAS  Google Scholar 

  • Pourbafrani M, Forgacs G, Horvath IS, Niklasson C, Taherzadeh MJ. Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol. 2010;101(11):4246–50. doi:10.1016/j.biortech.2010.01.077.

    Article  CAS  Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A. 2011;108(37):15079–84. doi:10.1073/pnas.1105776108.

    Article  CAS  Google Scholar 

  • Raju NB. Genetic control of the sexual cycle in Neurospora. Mycol Res. 1992;96(4):241–62. doi:10.1016/S0953-7562(09)80934-9.

    Article  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C. Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol. 2006;44(2):185–95.

    CAS  Google Scholar 

  • Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics. 2013;14:541. doi:10.1186/1471-2164-14-541.

    Article  CAS  Google Scholar 

  • Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, et al. Architecture and development of the Neurospora crassa hypha—a model cell for polarized growth. Fungal Biol. 2011;115(6):446–74. doi:10.1016/j.funbio.2011.02.008.

    Article  Google Scholar 

  • Rivas B, Torrado A, Torre P, Converti A, Dominguez JM. Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem. 2008;56(7):2380–7. doi:10.1021/jf073388r.

    Article  CAS  Google Scholar 

  • Roche CM, Blanch HW, Clark DS, Glass NL. Physiological role of Acyl coenzyme A synthetase homologs in lipid metabolism in Neurospora crassa. Eukaryot Cell. 2013;12(9):1244–57. doi:10.1128/ec.00079-13.

    Article  CAS  Google Scholar 

  • Roche CM, Loros JJ, McCluskey K, Glass NL. Neurospora crassa: looking back and looking forward at a model microbe. Am J Bot. 2014a;101(12):2022–35. doi:10.3732/ajb.1400377.

    Article  CAS  Google Scholar 

  • Roche CM, Glass NL, Blanch HW, Clark DS. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass. Biotechnol Bioeng. 2014b;111(6):1097–107. doi:10.1002/bit.25211.

    Article  CAS  Google Scholar 

  • Romano A. Sugar transport systems of baker’s yeast and filamentous fungi. In: Morgan M, editor. Carbohydrate metabolism in cultured cells. New York: Springer; 1986. p. 225–44.

    Chapter  Google Scholar 

  • Ronne H. Glucose repression in fungi. Trends Genet. 1995;11:12–7. doi:10.1016/S0168-9525(00)88980-5.

    Article  CAS  Google Scholar 

  • Rossier C, Ton-That T-C, Turian G. Microcyclic microconidiation in Neurospora crassa. Exp Mycol. 1977;1(1):52–62. doi:10.1016/S0147-5975(77)80030-3.

    Article  Google Scholar 

  • Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y. Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol. 2012;110:198–205. doi:10.1016/j.biortech.2012.01.053.

    Article  CAS  Google Scholar 

  • Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng. 2013;110(4):1039–49. doi:10.1002/bit.24773.

    Article  CAS  Google Scholar 

  • Ruijter GJ, Visser J. Carbon repression in Aspergilli. FEMS Microbiol Lett. 1997;151(2):103–14. doi:10.1016/S0378-1097(97)00161-4.

    Article  CAS  Google Scholar 

  • Ruijter GJG, Vanhanen SA, Gielkens MMC, van de Vondervoort PJI, Visser J. Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and l-arabinose catabolic enzymes. Microbiology. 1997;143:2991–8. doi:10.1099/00221287-143-9-2991.

    Article  CAS  Google Scholar 

  • Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife. 2014;3. doi:10.7554/eLife.03703.

  • Sánchez ÓJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270–95. doi:10.1016/j.biortech.2007.11.013.

    Article  CAS  Google Scholar 

  • Santangelo GM. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006;70:253–82. doi:10.1128/MMBR.70.1.253-282.2006.

    Article  CAS  Google Scholar 

  • Scarborough GA. Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem. 1970;245(15):3985–7.

    CAS  Google Scholar 

  • Schneider RP, Wiley WR. Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol. 1971;106(2):479–86.

    CAS  Google Scholar 

  • Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87(3):787–99. doi:10.1007/s00253-010-2632-1.

    Article  CAS  Google Scholar 

  • Seiboth B, Metz B. Fungal arabinan and l-arabinose metabolism. Appl Microbiol Biotechnol. 2011;89:1665–73. doi:10.1007/s00253-010-3071-8.

    Article  CAS  Google Scholar 

  • Selker EU. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi:10.1146/annurev.ge.24.120190.003051.

    Article  CAS  Google Scholar 

  • Shear CL, Dodge BO. Life histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group. Washington, DC: United States Government printing office; 1927.

    Google Scholar 

  • Shen WC, Wieser J, Adams TH, Ebbole DJ. The Neurospora rca-1 gene complements an Aspergillus flbD sporulation mutant but has no identifiable role in Neurospora sporulation. Genetics. 1998;148(3):1031–41.

    CAS  Google Scholar 

  • Shiu S-H, Shih M-C, Li W-H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol. 2005;139:18–26. doi:10.1104/pp.105.065110.

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, et al. Toward a systems approach to understanding plant cell walls. Science. 2004;306(5705):2206–11. doi:10.1126/science.1102765.

    Article  CAS  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulosic biofuels. Science. 2010;329(5993):790–2. doi:10.1126/science.1189268.

    Article  CAS  Google Scholar 

  • Souffriau B, den Abt T, Thevelein JM. Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett. 2012;586(16):2494–9. doi:10.1016/j.febslet.2012.06.012.

    Article  CAS  Google Scholar 

  • Springer ML, Yanofsky C. A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev. 1989;3(4):559–71. doi:10.1101/gad.3.4.559.

    Article  CAS  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, et al. Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 1995;376(1–2):103–7. doi:10.1186/1471-2164-12-269.

    Article  CAS  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell. 2006;5:2128–37. doi:10.1128/EC.00211-06.

    Article  CAS  Google Scholar 

  • Stricker AR, Steiger MG, Mach RL. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett. 2007;581(21):3915–20. doi:10.1016/j.febslet.2007.07.025.

    Article  CAS  Google Scholar 

  • Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels. 2012;5:14. doi:10.1186/1754-6834-5-14.

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1–11. doi:10.1016/S0960-8524(01)00212-7.

    Article  CAS  Google Scholar 

  • Sun J, Glass NL. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One. 2011;6(9), e25654. doi:10.1371/journal.pone.0025654.

    Article  CAS  Google Scholar 

  • Sun J, Tian C, Diamond S, Glass NL. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell. 2012;11(4):482–93. doi:10.1128/ec.05327-11.

    Article  CAS  Google Scholar 

  • Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, et al. Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 2012;78(17):6161–71. doi:10.1128/aem.01503-12.

    Article  CAS  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Masaki H. Uozumi t. Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiol Lett. 1996;145:361–6. doi:10.1111/j.1574-6968.1996.tb08601.x.

    Article  CAS  Google Scholar 

  • Tatum EL, Lederberg J. Gene recombination in the bacterium Escherichia coli. J Bacteriol. 1947;53(6):673–84.

    CAS  Google Scholar 

  • Thevelein JM, Voordeckers K. Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol. 2009;26(11):2407–14. doi:10.1093/molbev/msp168.

    Article  CAS  Google Scholar 

  • Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD, et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A. 2009;106(52):22157–62. doi:10.1073/pnas.0906810106.

    Article  CAS  Google Scholar 

  • Tian C, Li J, Glass NL. Exploring the bZIP transcription factor regulatory network in Neurospora crassa. Microbiology. 2011;157(3):747–59. doi:10.1099/mic.0.045468-0.

    Article  CAS  Google Scholar 

  • Turner G, Harris SD, Turner G, Harris SD. Genetic control of polarized growth and branching in filamentous fungi. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  • Turner BC, Perkins DD, Fairfield A. Neurospora from natural populations: a global study. Fungal Genet Biol. 2001;32(2):67–92. doi:10.1006/fgbi.2001.1247.

    Article  CAS  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219–22. doi:10.1126/science.1192231.

    Article  CAS  Google Scholar 

  • Vaheri M, Vaheri MO, Kauppinen V. Formation and release of cellulolytic enzymes during growth of Trichoderma reesei on cellobiose and glycerol. Eur J Appl Microbiol Biotechnol. 1979;8(1–2):73–80. doi:10.1007/BF00510268.

    Article  CAS  Google Scholar 

  • van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91(6):1477–92. doi:10.1007/s00253-011-3473-2.

    Article  CAS  Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek. 2006;90(4):391–418. doi:10.1007/s10482-006-9085-7.

    Article  CAS  Google Scholar 

  • van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaff LH. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Envir Microbiol. 1998;64:3615–9.

    Google Scholar 

  • Vankuyk PA, Diderich JA, MacCabe AP, Hererro O, Ruijter GJ, Visser J. Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochem J. 2004;379(Pt 2):375–83. doi:10.1042/bj20030624.

    Article  CAS  Google Scholar 

  • Vincken J-P, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, et al. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 2003;132:1781–9. doi:10.1104/pp.103.022350.

    Article  CAS  Google Scholar 

  • Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc. 2014;136(2):562–5. doi:10.1021/ja409384b.

    Article  CAS  Google Scholar 

  • Wang B, Cai P, Sun W, Li J, Tian C, Ma Y. A transcriptomic analysis of Neurospora crassa using five major crop residues and the novel role of the sporulation regulator rca-1 in lignocellulase production. Biotechnol Biofuels. 2015;8:21. doi:10.1186/s13068-015-0208-0.

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G. Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. Report. Washington DC: DOE. 2004. ADA436528

    Google Scholar 

  • Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, et al. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One. 2011;6(11), e27807. doi:10.1371/journal.pone.0027807.

    Article  CAS  Google Scholar 

  • Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem. 2001;276(22):19404–13. doi:10.1074/jbc.M011242200.

    Article  CAS  Google Scholar 

  • Xiang Q, Glass NL. Identification of vib-1, a Locus Involved in Vegetative Incompatibility Mediated by het-c in Neurospora crassa. Genetics. 2002;162:89–101.

    CAS  Google Scholar 

  • Xie X, Wilkinson HH, Correa A, Lewis ZA, Bell-Pedersen D, Ebbole DJ. Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genet Biol. 2004;41(12):1104–19. doi:10.1016/j.fgb.2004.08.009.

    Article  CAS  Google Scholar 

  • Xiong Y, Sun J, Glass NL. VIB1, a Link between Glucose Signaling and Carbon Catabolite Repression, Is Essential for Plant Cell Wall Degradation by Neurospora crassa. PLoS Genet. 2014a;10(8), e1004500. doi:10.1371/journal.pgen.1004500.

    Article  CAS  Google Scholar 

  • Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, et al. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation. Fungal Genet Biol. 2014b;72:21–33. doi:10.1016/j.fgb.2014.05.005.

    Article  CAS  Google Scholar 

  • Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci. 2013;38(3):151–9. doi:10.1016/j.tibs.2013.01.003.

    Article  CAS  Google Scholar 

  • Yoder W, Lehmbeck J. Heterologous expression and protein secretion in filamentous fungi. In: Tkacz J, Lange L, editors. Advances in fungal biotechnology for industry, agriculture, and medicine. New York: Springer; 2004. p. 201–19.

    Chapter  Google Scholar 

  • Youngs H, Somerville C. Development of feedstocks for cellulosic biofuels. F1000 Biol Rep. 2012;4:10. doi:10.3410/b4-10.

    Article  Google Scholar 

  • Yousuf A. Biodiesel from lignocellulosic biomass—prospects and challenges. Waste Manag. 2012;32(11):2061–7. doi:10.1016/j.wasman.2012.03.008.

    Article  CAS  Google Scholar 

  • Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, et al. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem. 2013;288(46):32861–72. doi:10.1074/jbc.M113.505826.

    Article  CAS  Google Scholar 

  • Znameroski EA, Glass NL. Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnol Biofuels. 2013;6(1):6. doi:10.1186/1754-6834-6-6.

    Article  CAS  Google Scholar 

  • Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JH, et al. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Natl Acad Sci U S A. 2012;109(16):6012–7. doi:10.1073/pnas.1118440109.

    Article  CAS  Google Scholar 

  • Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. J Biol Chem. 2014;289(5):2610–9. doi:10.1074/jbc.M113.533273.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Louise Glass, Morgann Reilly, Jamie Cate, and Tian Chaoguang for critical reading of the manuscript, and we are grateful to John Taylor for advice with Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Philipp Benz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seibert, T., Thieme, N., Benz, J.P. (2016). The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_3

Download citation

Publish with us

Policies and ethics