Skip to main content

Bio-Based Polyurethane Foams for Heat-Insulating Applications

  • Chapter
  • First Online:

Abstract

In this chapter, the sustainable development of rigid polyurethane foams for heat-insulating applications is described. Firstly, the most important aspects as the use of bio-based and environmentally friendly components in the formulations of polyurethane systems as well as requirements for heat insulating of buildings are presented. Next, the complex mechanism of heat transport in porous materials is discussed including the influence of cell structure on the thermal conductivity of final rigid polyurethane foams. In the two last parts of this chapter, the most important components used in various methods of polyurethane foam synthesis are described. Moreover, the effects of bio-components and foaming conditions on the cell structure and physical mechanical properties of rigid polyurethane foams are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Banik I, Sain MM (2009) Water-blown soy polyol based polyurethane foams modified by cellulosic materials obtained from different sources. J Appl Polym Sci 112:1974–1987

    Article  Google Scholar 

  • Banik I, Sain MM (2008) Water blown soy polyol-based polyurethane foams of different rigidities. J Reinf Plast Compos 27:357–373

    Article  Google Scholar 

  • Biedermann A, Kudoke C, Merten A, Minogue E, Rotermund U, Ebert HP, Heineman U, Fricke J, Seifert H (2001) Analysis of heat transfer mechanisms in polyurethane rigid foam. J Cell Plast 37:467–481

    Article  Google Scholar 

  • Cabulis U, Kirpluks M, Stirna U, Lopez MJ, Carmen Vargas-Garcia M, Suarez-Estrella F, Moreno J (2012) Rigid polyurethane foams obtained from tall oil and filled with natural fibers: application as a support for immobilization of lignin-degrading microorganisms. J Cell Plast 48:500–515

    Article  Google Scholar 

  • Casado U, Marcovich NE, Aranguren MI, Mosiewicki MA (2009) High-strength composites based on tung oil polyurethane and wood flour: effect of the filler concentration on the mechanical properties. Polym Eng Sci 49:713–721

    Article  Google Scholar 

  • Choe KH, Lee DS, Seo WJ (2004) Properties of rigid polyurethane foams with blowing agents and catalysts. Polym J 36:368–373

    Article  Google Scholar 

  • Cunningham A, Jeffs GMF, Rosbotham ID, Sparrow DJ (1989) Recent advances in the development of rigid polyurethane foams of improved thermal insulation efficiency. J Therm Insul 12:209–222

    Google Scholar 

  • Dai H, Yan L, Lin B, Wang C, Shi G (2009) Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with Methanol, 1,2-Ethanediol and 1,2-Propanediol. J Am Oil Chem Soc 86:261–267

    Article  Google Scholar 

  • Fan H, Tekeei A, Suppes GJ, Hsieh FH (2013) Rigid polyurethane foams made from high viscosity soy-polyols. J Appl Polym Sci 127:1623–1629

    Article  Google Scholar 

  • Faruk O, Sain M, Farnood R, Pan Y, Xiao H (2014) Development of lignin and nanocellulose enhanced bio PU foams for automotive parts. J Polym Environ 22:279–288

    Article  Google Scholar 

  • Fridrihsone A, Stirna U, Lazdina B, Misane M, Vilsone D (2013) Characterization of polyurethane networks structure and properties based on rapeseed oil derived polyol. Eur Polym J 49:1204–1214

    Article  Google Scholar 

  • Gao L, Zheng G, Zhou Y, Hu L, Feng G, Xie Y (2013) Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam. Ind Crops Prod 50:638–647

    Article  Google Scholar 

  • Gu R, Sain MM, Konar SK (2013) A feasibility study of polyurethane composite foam with added hardwood pulp. Ind Crops Prod 42:273–279

    Article  Google Scholar 

  • Gu R, Konar S, Sain M (2012) Preparation and characterization of sustainable polyurethane foams from soybean oils. J Am Oil Chem Soc 89:2103–2111

    Article  Google Scholar 

  • Gu R, Khazabi M, Sain M (2011) Fiber reinforced soy-based polyurethane spray foam insulation. Part 2: thermal and mechanical properties. BioResources 4:3775–3790

    Google Scholar 

  • Guo A, Demydov D, Zhang W, Petrovic ZS (2002) Polyols and polyurethanes from hydroformylation of soybean oil. J Polym Environ 10:49–52

    Article  Google Scholar 

  • Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473

    Article  Google Scholar 

  • Hu YH, Gao Y, Wang DN, Hu CP, Zu S, Vanoverloop L, Randall D (2002) Rigid polyurethane foam prepared from a rape seed oil based polyol. J Appl Polym Sci 84:591–597

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2015) Synthesis report climate change

    Google Scholar 

  • Ionescu M, Wan X, Bilic N, Petrovic ZS (2012) Polyols and rigid polyurethane foams from cashew nut shell liquid. J Polym Environ 20:647–658

    Article  Google Scholar 

  • Ionescu M, Petrovic ZS, Wan X (2010) Ethoxylated soybean polyols for polyurethanes. J Polym Environ 18: 1–7

    Google Scholar 

  • Ionescu M (2008) Chemistry and technology of polyols for polyurethanes. Rapra Technology Ltd, Shawbury

    Google Scholar 

  • Javni I, Zhang W, Petrovic ZS (2004) Soybean-oil-based polyisocyanurate rigid foams. J Polym Environ 12:123–129

    Google Scholar 

  • Jin JF, Chen YL, Wang DN, Hu CP, Zhu S, Vanoverloop L, Randall D (2002) Structures and physical properties of rigid polyurethane foam prepared with rosin-based polyol. J Appl Polym Sci 84:598–604

    Google Scholar 

  • John J, Bhattacharya M, Turner RB (2002) Characterization of polyurethane foams from soybean oil. J Appl Polym Sci 86:3097–3107

    Article  Google Scholar 

  • Kakroodi AR, Khazabi M, Maynard K, Sain M, Kwon O (2015) Soy-based polyurethane spray foam insulations for light weight wallpanels and their performances under monotonic and static cyclicshear forces. Ind Crops Prod 74:1–8

    Article  Google Scholar 

  • Kayode AF (2015) A review of vegetable oil-based polymers: synthesis and applications. Open J Polym Chem 5:34–40

    Article  Google Scholar 

  • Khazabi M, Gu R, Sain M (2011) Fiber reinforced soy-based polyurethane spray foam insulation. Part 1: cell morphologies. BioResources 6:3757–3774

    Google Scholar 

  • Kirpluks M, Cābulis U, Kurańska M, Prociak A (2013) Three different approaches for polyol synthesis from rapeseed oil. Key Eng Mater 559:69–74

    Article  Google Scholar 

  • Król P (2010) Ekologiczne uwarunkowania rozwoju technologii wytwarzania i stosowania tworzyw poliuretanowych. Przemysł Chemiczny 89:923–926

    Google Scholar 

  • Król P (2009) Poliuretany- Przegląd 60-letniego rozwoju ich syntezy i zastosowań. Polimery 54:489–499

    Google Scholar 

  • Kurańska M, Prociak A, Kirpluks M, Cabulis U (2015a) Polyurethane–polyisocyanurate foams modified with hydroxylderivatives of rapeseed oil. Ind Crops Prod 74:887–897

    Article  Google Scholar 

  • Kurańska M, Prociak A, Cabulis U, Kirpïuks M (2015b) Water-blown polyurethane-polyisocyanurate foams based on bio-polyols with wood fibers. Polimery 60:35–42

    Google Scholar 

  • Kurańska M, Prociak A, Kirpluks M, Cabulis U (2013) Porous polyurethane composites based on bio-components. Compos Sci Technol 75:70–76

    Article  Google Scholar 

  • Kuranska M, Prociak A (2012) Porous polyurethane composite with natural fibres. Compos Sci Technol 72:299–304

    Article  Google Scholar 

  • Lee CS, Ooi TL, Chuah CH, Ahmad S (2007) Synthesis of palm oil-based diethanolamides. J Am Oil Chem Soc 84:1161–1167

    Article  Google Scholar 

  • Lubguban AA, Tu YC, Lozada ZR, Hsieh FH, Suppes GJ (2009) Functionalization via glycerol transesterification of polymerized soybean oil. J Appl Polym Sci 112:19–27

    Article  Google Scholar 

  • Luo X, Amar M, Misraa M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crops Prod 47:13–19

    Article  Google Scholar 

  • Luo X, Mohanty A, Misra M (2012) Water-blown rigid biofoams from soy-based biopolyurethene and microcrystalline cellulose. J Oil Chem Soc 89:2057–2065

    Article  Google Scholar 

  • Mello VM, Martins GBC, Montenegro MA, Suarez PAZ (2015) Thermal processing of soybean oil to obtain bio-based polymers and bio-oil. Ind Crops Prod 66:255–261

    Article  Google Scholar 

  • Mosiewicki MA, Aranguren MI (2013) A short review on novel biocomposites based on plant oil precursors. Eur Polym J 49:1243–1256

    Article  Google Scholar 

  • Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II. Foams. J Am Oil Chem Soc 84:65–72

    Article  Google Scholar 

  • Paberza A, Cabulis U, Arshanitsa A (2014) Wheat straw lignin as filler for rigid polyurethane foams on the basis of tall oil amide. Polimery 59:477–481

    Article  Google Scholar 

  • Pargana N, Pinheiro MD, Silvestre JD, Brito J (2014) Comparative environmental life cycle assessment of thermalinsulation materials of buildings. Energy Buildings 82:466–481

    Article  Google Scholar 

  • Park DH, Park GP, Kim SH, Kim WN (2013) Effects of isocyanate index and environmentally-friendly blowing agents on the morphological, mechanical, and thermal insulating properties of polyisocyanurate-polyurethane foams. Macromol Res 21:852–859

    Article  Google Scholar 

  • Petter JB (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Buildings 43:2549–2563

    Article  Google Scholar 

  • Pielichowski K, Kulesza K, Pearce EM (2003) Thermal degradation studies on rigid polyurethane foams blown with pentane. J Appl Polym Sci 88:2319–2330

    Article  Google Scholar 

  • Prociak A, Rokicki G, Ryszkowska J (2014) Materiały poliuretanowe, Wydawnictwo naukowe PWN

    Google Scholar 

  • Prociak A (2008a) Właściwości termoizolacyjne sztywnych pianek poliuretanowych syntetyzowanych z udziałem polioli z olejów roślinnych. Polimery 53:195–200

    Google Scholar 

  • Prociak A (2008b) Poliuretanowe materiały termoizolacyjne nowej generacji. Wydawnictwo Politechniki Krakowskiej, Kraków

    Google Scholar 

  • Prociak A, Pielichowski J, Sterzyński T (2000) Thermal diffusivity of rigid polyurethane foams blown with different hydrocarbons. Polym Test 19:705–712

    Article  Google Scholar 

  • Roux GA, Balme AL (1990) The Improvement of the effective R-value of rigid polyurethane foams. J Therm Insul 14:98–106

    Google Scholar 

  • Rutowicz M (2012) Wykonywanie izolacji cieplnych z pianki poliuretanowej. Materiały Budowlane 7:1

    Google Scholar 

  • San RV (2007) Fluoro-olefine additives to reduce thermal conductivity of rigid foams. PU Magazine 4

    Google Scholar 

  • Seo WJ, Park JH, Sung YT, Hwang DH, Kim WN, Lee HS (2004) Properties of water-blown rigid polyurethane foams with reactivity of raw materials. J Appli Polym Sci 93:2334–2342

    Article  Google Scholar 

  • Sonnenschein MF, Wendt BL (2013) Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships. Polymer 54:2511–2520

    Article  Google Scholar 

  • Stirna U, Fridrihsone A, Lazdiņa B, Misāne M, Vilsone D (2013) Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties. J Polym Environ 21:952–962

    Article  Google Scholar 

  • Stirna U, Cabulis U (2008) Water-blown polyisocyanurate foams from vegetable oil polyols. J Cell Plast 44:139–160

    Article  Google Scholar 

  • Tan S, Abraham T, Ference D, Masocko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846

    Article  Google Scholar 

  • Technical Datasheet SolvaySOLKANE® 365/227 Blends. Solvay

    Google Scholar 

  • Technical Datasheet Honeywell Solstice® 1233zd(E). Honeywell Solstice®

    Google Scholar 

  • Tu YC, Fan H, Suppes GJ, Hsieh FH (2009) Physical properties of water-blown rigid polyurethane foams containing epoxidized soybean oil in different isocyanate indices. J Appl Polym Sci 114:2577–2583

    Article  Google Scholar 

  • Tu YC, Suppes GJ, Hsieh FH (2008) Water-blown rigid and flexible polyurethane foams containing epoxidized soybean oil triglycerides. J Appl Polym Sci 109:537–544

    Article  Google Scholar 

  • Tu YC, Kiatsimkul P, Suppes G, Hsieh FH (2007) Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J Appl Polym Sci 105:453–459

    Article  Google Scholar 

  • Veronese VB, Menger RK, Forte MMC, Petzhold CL (2011) Rigid polyurethane foam based on modified vegetable oil. J Appl Polym Sci 120:530–537

    Article  Google Scholar 

  • Yadav S, Zafar F, Hasnat A, Ahmad S (2009) Poly (urethane fatty amide) resin from linseed oil—a renewable resource. Prog Org Coat 64:27–32

    Article  Google Scholar 

  • Yu-Hallada LC, McLellan KP, Wierzbicki RJ, Reichel CJ (1993) Improved rigid insulating polyurethane foams prepared with HCFCs and perfluoroalkanes. J Cell Plast 29:589–596

    Article  Google Scholar 

  • Yang LT, Zhao CS, Dai CL, Fu LY, Lin SQ (2012) Thermal and mechanical properties of polyurethane rigid foam based on epoxidized soybean oil. J Polym Environ 20:230–236

    Article  Google Scholar 

  • Yuan J, Shi Sheldon Q (2009) Effect of the addition of wood flours on the properties of rigid polyurethane foam. J Appl Polym Sci 113:2902–2909

    Article  Google Scholar 

  • Zhang L, Zhang M, Hu L, Zhou Y (2014) Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod 52:380–388

    Article  Google Scholar 

  • Zhu M, Bandyopadhyay-Ghosh S, Khazabi M, Cai H, Correa C, Sain M (2012) Reinforcement of soy polyol-based rigid polyurethane foams by cellulose microfibers and nanoclays. J Appl Polym Sci 124:4702–4710

    Google Scholar 

  • Żabski, L.; Papiński, J. (2012) Panki PIR-nowy typ izolacji typu sztywna pianka poliuretanowa. Izolacje 6, 54-60.

    Google Scholar 

  • Żabski L, Papiński J (2010) PUR i PIR, czyli o efektywnym izolowaniu. Izolacje 4:34–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Prociak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurańska, M., Prociak, A. (2016). Bio-Based Polyurethane Foams for Heat-Insulating Applications. In: Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, CG., Ivanov, V. (eds) Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27505-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27503-1

  • Online ISBN: 978-3-319-27505-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics