Skip to main content

DNA Transfer to Plants by Agrobacterium rhizogenes: A Model for Genetic Communication Between Species and Biospheres

  • Living reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 325 Accesses

Abstract

Agrobacterium rhizogenes genetically transforms dicotyledonous plants, producing a transformed phenotype caused by the Ri TL-DNA (root-inducing, left hand, transferred DNA). Phenotypic changes include wrinkled leaves, reduced apical dominance, shortened internodes, changes in flowering, including a switch from biennialism to annualism, and altered secondary metabolite production, including increases in alkaloids. The transformed phenotype is correlated with a reduction in the accumulation of polyamines; it is mimicked using an inhibitor of polyamine synthesis. Roots transformed by A. rhizogenes grow in axenic culture, permitting the production of secondary metabolites in bioreactors, the modeling of the rhizosphere, and the propagation of arbuscular micorrhizal fungi for biofertilization.

A general view of parasexual DNA transfer postulates the exchange of genetic information among genetically distant plant genomes, with A. rhizogenes acting as an intermediary, thanks to its wide host spectrum for DNA transfer to plant, fungal, and animal cells and to exchange with other bacteria, including Acinetobacter baylyi, which uses homologous recombination to incorporate plant DNA into its genome. Marker exchange served to document DNA transfer from leaves and roots to A. baylyi. Transferred functions in this hypothetical system connecting phylogenetically distant genomes included genes encoding antibiotic resistance, nutritional mediators of plant/microorganism interactions (calystegins and betaines), and an elicitor of plant host defense responses (β-cryptogein), whose expression in tobacco resulted in increased resistance to Phytophthora. Thus, DNA encoding a trait of adaptive significance in a plant could be acquired by soil bacteria and eventually transferred into multiple plant species, thanks to the presence on the Ri TL-DNA of genes that increase developmental plasticity (organ formation) in the host plant, ensuring the sexual transmission of the foreign DNA. The image of genetic football is invoked to convey the multiple facets of this largely theoretical system of this parasexual DNA transfer.

The plausibility of a role for DNA transfer in the origin and future of our biosphere was tested by attaching unprotected DNA and seeds of Arabidopsis thaliana and tobacco to the outside of the International Space Station to simulate an interplanetary transfer of life. Seeds and fragments of DNA survived 18 months of exposure, indicating that DNA transfer could play a role in biosphere formation and evolution, particularly when protected from short wavelength UV by flavonoids in the seed coat.

So what molecular biology has done you see, is to prove beyond any doubt but in a totally new way the complete independence of the genetic information from events occurring outside or even inside the cell, to prove by the very structure of the genetic code and the way it is transcribed that no information from outside of any kind can ever penetrate the inheritable genetic message.

Jacques Monod one of the founders of molecular biology, quoted in the Eighth day of Creation, by Horace Freeland Judson, Simon and Schuster 1979.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

crypt :

Gene encoding β-cryptogein

DFMO:

DL-Difluoromethylornithine

DNA:

Deoxyribonucleic acid

HGT:

Horizontal gene transfer

nptII :

Gene encoding kanamycin resistance

PCR:

Polymerase chain reaction

Ri TL-DNA:

Root-inducing left hand, transferred DNA

RNA:

Ribonucleic acid

rolA,B… :

Root locus A B… from the Ri TL-DNA

References

  1. Tepfer D (1989) Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology, and evolution. In: Kosuge T, Nester E (eds) Plant-microbe interactions, vol 3. McGraw Hill, New York, pp 294–342

    Google Scholar 

  2. Slightom JL, Jouanin L, Leach F, Drong RF, Tepfer D (1985) Isolation and identification of TL-DNA/plant junctions in Convolvulus arvensis transformed by Agrobacterium rhizogenes strain A4. Embo J 4(12):3069–3077

    CAS  Google Scholar 

  3. Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol Plant Mol Biol 35:387–413

    Article  CAS  Google Scholar 

  4. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37(3):959–967

    Article  CAS  Google Scholar 

  5. Menage A, Morel G (1964) Sur la presence d’un acide amine nouveau dans le tissu de crown-gall. Physiol Veg 2:1–8

    CAS  Google Scholar 

  6. Braun A (1947) Thermal studies on the factors responsible for tumor induction in crown gall. Am J Bot 34:234–240

    Article  CAS  Google Scholar 

  7. Braun AC (1958) A physiological basis for autonomous growth of the crown-gall tmor cell. Proc Natl Acad Sci U S A 44:344–349

    Article  CAS  Google Scholar 

  8. Avery O, Mac Leod C, Mc Carty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79:137–158

    Article  CAS  Google Scholar 

  9. Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur les guanidines des tissus de crown-gall. Mise en evidence d’une relation biochimique specifique entre les souches d’Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol Veg 8:205–209

    CAS  Google Scholar 

  10. Goldman A, Tempe J, Morel G (1968) Quelques particularités de diverses souches d’Agrobacterium tumefaciens. CR Seances Soc Biol Ses Fil 162:630–631

    Google Scholar 

  11. Tempé J, Goldmann A (1982) Occurence and biosynthesis of opines. In: Kahl G, Schell J (eds) Molecular biology of plant tumors. Academic, New York, pp 451–459

    Chapter  Google Scholar 

  12. Tempe J, Estrade C, Petit A (1978) The biological significance of opines: II. The conjugative activity of the Ti-plasmids of Agrobacterium tumefaciens. In: Sta. Path. Veg. Phytobact A, France (ed) The IVth international conference on plant pathogenic bacteria, Angers, pp 153–160

    Google Scholar 

  13. Nester EW, Gordon MP (1991) Molecular strategies in the interaction between Agrobacterium and its hosts. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant – microbe interactions, vol I, Current plant science and biotechnology in agriculture. Kluwer, Dordrecht, pp 3–9

    Chapter  Google Scholar 

  14. Tempe J, Petit A, Bannerot H (1982) Presence de substances semblables a des opines dans des nodosites de luzerne. C R Acad Sci 295(5):413–416

    CAS  Google Scholar 

  15. Tepfer D, Bonnett H (1972) The role of phytochrome in the geotropic behavior of roots of Convolvulus arvensis. Planta 106(4):311–324

    Article  CAS  Google Scholar 

  16. Tepfer D, Yacoub A (1986) Modèle de rhizosphère utile notamment pour l’étude des parasites des plantes. France Pat 2575759 Patent

    Google Scholar 

  17. Tepfer D, Fosket D (1975) Phosphorylation of ribosomal protein in soybean. Phytochemistry 14:1161–1165

    Article  CAS  Google Scholar 

  18. Tepfer D, Fosket D (1978) Hormone-mediated translational control of protein synthesis in cultured cells of Glycine max. Dev Biol 62:486–497

    Article  CAS  Google Scholar 

  19. Chilton MD, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conseverd DNA of Ti plasmids overlaps T_DNA maintained in plant tumours. Nature 275(5676):147–149

    Article  CAS  Google Scholar 

  20. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626

    Article  CAS  Google Scholar 

  21. White P (1938) Cultivation of excised roots of dicotyledonous plants. Am J Bot 25:348–356

    Article  Google Scholar 

  22. Torrey J (1958) Endogenous bud and root formation by isolated roots of Convolvulus grown in vitro. Plant Physiol 33(4):258–263

    Article  CAS  Google Scholar 

  23. Tepfer D, Tempé J (1981) Production d’agropine par des racines formées sous l’action d’Agrobacterium rhizogenes, souche A4. C R Acad Sci 292(série III):153–156

    CAS  Google Scholar 

  24. Chilton MD, Tepfer D, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes Inserts T-DNA into the genomes of the host plant root cells. Nature 295(5848):432–434

    Article  CAS  Google Scholar 

  25. Tepfer D (1982) La transformation génétique de plantes supérieures par Agrobacterium rhizogenes. In: 2e Colloque sur les Recherches Fruitières. Centre Technique Interprofessionnel des Fruits et Légumes, Bordeaux, pp 47–59

    Google Scholar 

  26. Tepfer D (1983) The biology of genetic transformation of higher plants by Agrobacterium rhizogenes. In: Puhler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin, pp 248–258

    Chapter  Google Scholar 

  27. Tepfer D (1983) The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: nature got there first. In: Lurquin P, Kleinhofs A (eds) Genetic engineering in eukaryotes. Plenum Press, New York, pp 153–164

    Chapter  Google Scholar 

  28. Durand-Tardif M, Broglie R, Slightom J, Tepfer D (1985) Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. Organ and phenotypic specificity. J Mol Biol 186(3):557–564

    Article  CAS  Google Scholar 

  29. Martin-Tanguy J, Sun LY, Burtin D, Vernoy R, Rossin N, Tepfer D (1996) Attenuation of the phenotype caused by the root-inducing, left-hand, transferred DNA and Its rolA gene (Correlations with changes in polyamine metabolism and DNA methylation). Plant Physiol 111(1):259–267

    Article  CAS  Google Scholar 

  30. David C, Chilton MD, Tempé J (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Biotechnology 2:73–76

    Article  CAS  Google Scholar 

  31. White F, Ghidossi G, Gordon M, Nester E (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci U S A 79:3193–3197

    Article  CAS  Google Scholar 

  32. Costantino P, Spano L, Pomponi M, Benvenuto E, Ancora G (1984) The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2:465–470

    CAS  Google Scholar 

  33. Spano L, Pomponi M, Costantino P, Van Slogteren G, Tempe J (1982) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Bio 1:291–300

    Article  CAS  Google Scholar 

  34. Spano L, Costantino P (1982) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco. Z Pflanzenphysiol 106:87–92

    Article  Google Scholar 

  35. Furner I, Huffman G, Amasino R, Garfinkel D, Gordon M, Nester E (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422–427

    Article  CAS  Google Scholar 

  36. Martin-Tanguy J, Corbineau F, Burtin D, Ben-Hayyim G, Tepfer D (1993) Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with a-Aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers. Plant Sci 93(1-2):63–76

    Article  CAS  Google Scholar 

  37. Ackermann C (1977) Pflanzen aus Agrobacterium rhizogenes-tumoren aus Nicotiana tabacum. Plant Sci Lett 8:23–30

    Article  Google Scholar 

  38. White F, Garfinkel D, Huffman G, Gordon M, Nester E (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    Article  CAS  Google Scholar 

  39. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M, Liu Q, Gheysen G (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci U S A 112(18):5844–5849

    Article  CAS  Google Scholar 

  40. Lambert C, Tepfer D (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor Appl Genet 85(1):105–109

    Article  CAS  Google Scholar 

  41. Taylor BR, White FF, Nester EW, Gordon MP (1985) Transcription of Agrobacterium rhizogenes A4 T-DNA. Mol Gen Genet 201:546–553

    Article  CAS  Google Scholar 

  42. White F, Taylor B, Huffman G, Gordon M, Nester E (1985) Molecular and genetic analysis of the transferred DNA regions of the root inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  Google Scholar 

  43. Levesque H, Delepelaire P, Rouzé P, Slightom J, Tepfer D (1988) Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol 11:731–744

    Article  CAS  Google Scholar 

  44. Tepfer D, Boutteaux C, Vigon C, Aymes S, Perez V, O’Donohue MJ, Huet J, Pernollet J (1998) Phytophthora resistance through production of a fungal protein elicitor (β-cryptogein) in tobacco. Mol Plant Microbe Interact 11–1:64–67

    Article  Google Scholar 

  45. de Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol 69(8):4455–4462

    Article  CAS  Google Scholar 

  46. Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34:81–88

    Article  CAS  Google Scholar 

  47. Pote J, Mavingui P, Navarro E, Rosselli W, Wildi W, Simonet P, Vogel TM (2009) Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains. Chemosphere 75(4):498–504

    Article  CAS  Google Scholar 

  48. de Vries J, Wackernagel W (1998) Detection of nptll (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257(6):606–613

    Article  Google Scholar 

  49. Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Perica MC (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res 12(4):425–437

    Article  CAS  Google Scholar 

  50. Tepfer D, Metzger L, Prost R (1989) Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges. Plant Mol Biol 13(3):295–302

    Article  CAS  Google Scholar 

  51. Ceccherini M, Pote J, Kay E, Van VT, Marechal J, Pietramellara G, Nannipieri P, Vogel TM, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl Environ Microbiol 69(1):673–678

    Article  CAS  Google Scholar 

  52. Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum develops a state of competence and exchanges genetic material. Mol Plant Microbe Interact 12:1–6

    Article  Google Scholar 

  53. Nutman PS (1965) The relation between nodule bacteria and the legume host in the rhizosphere and in the process of infection. In: Baker KF, Synder WC (eds) Ecology of soil-borne pathogens. University of California Press, Berkeley, pp 231–247

    Google Scholar 

  54. Murphy PJ, Heycke N, Banfalvi Z, Tate ME, de Bruijn F, Kondorosi A, Tempé J, Schell J (1987) Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc Natl Acad Sci U S A 84:493–497

    Article  CAS  Google Scholar 

  55. Tepfer D, Goldmann A, Pamboukdjian N, Maille M, Lépingle A, Chevalier D, Dénarié J, Rosenberg C (1988) A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegia sepium. J Bacteriol 170(3):1153–1161

    CAS  Google Scholar 

  56. Boivin C, Malpica C, Rosenberg C, Dénarié J, Goldman A, Fleury V, Maille M, Message B, Tepfer D (1989) Metabolic signals in the rhizosphere: catabolism of calystegins and trigonelline by Rhizobium meliloti. In: Lugtenberg B (ed) Signal molecules in plant and plant-microbe interactions, Nato ASI Series. Springer, Berlin, pp 401–407

    Chapter  Google Scholar 

  57. Goldmann A, Milat ML, Ducrot PH, Lallemand JY, Maille M, Lepingle A, Charpin I, Tepfer D (1990) Tropane derivatives from Calystegia sepium. Phytochemistry 29(7):2125–2127

    Article  CAS  Google Scholar 

  58. Goldmann A, Message B, Tepfer D, Molyneux RJ, Duclos O, Boyer FD, Pan YT, Elbein AD (1996) Biological activities of the nortropane alkaloid, calystegine B2, and analogs: structure-function relationships. J Nat Prod 59(12):1137–1142

    Article  CAS  Google Scholar 

  59. Guntli D, Burgos S, Moënne-Loccoz Y, Défago G (1999) Calystegine degradation capacities of microbial rhizosphere communities of Zea mays (calystegine-negative) and Calystegia sepium (calystegine-positive). FEMS Microbiol Ecol 28:75–84

    Article  CAS  Google Scholar 

  60. Goldmann A, Boivin C, Fleury V, Message B, Lecoeur L, Maille M, Tepfer D (1991) Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol Plant Microbe Interact 4(6):571–578

    Article  CAS  Google Scholar 

  61. Goldmann A, Lecoeur L, Message B, Delarue M, Schoonejans E, Tepfer D (1994) Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol Lett 115:305–312

    Article  CAS  Google Scholar 

  62. Burnet M, Goldmann A, Message B, Drong R, El Amrani A, Loreau O, Slightom J, Tepfer D (2000) The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene 244(1-2):151–161

    Article  CAS  Google Scholar 

  63. Tempe J, Guyon P, Tepfer D, Petit A (1979) The role of opines in the ecology of the Ti plasmids of Agrobacterium. In: Timmis KN, Pühler A (eds) Plasmids of medical, environnemental and commercial importance. Elsevier/North-Holland Biomedical Press, pp 353–363

    Google Scholar 

  64. Huet JC, Pernollet JC (1993) Sequences of acidic and basic elicitin isoforms secreted by Phytophthora megasperma. Phytochemistry 33:797–805

    Article  CAS  Google Scholar 

  65. O’Donohue MJ, Gousseau H, Huet JC, Tepfer D, Pernollet JC (1995) Chemical synthesis, expression and mutagenesis of a gene encoding β-cryptogein, an elicitin produced by Phytophthora cryptogea. Plant Mol Biol 27(3):577–586

    Article  Google Scholar 

  66. O’Donohue MJ, Boissy G, Huet JC, Nespoulous C, Brunie S, Pernollet JC (1996) Overexpression in Pichia pastoris and crystallization of an elicitor protein secreted by the phytopathogenic fungus, Phytophthora cryptogea. Protein Expr Purif 8(2):254–261

    Article  Google Scholar 

  67. Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier J, Roby D, Ricci P (1999) Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223–235

    Article  CAS  Google Scholar 

  68. Bundock P, Den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdon T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14(13):3206–3214

    CAS  Google Scholar 

  69. Hanif M, Guillermo Pardo A, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    Article  CAS  Google Scholar 

  70. Ben-Hayyim G, Martin-Tanguy J, Tepfer D (1996) Changing root and shoot architecture with the rolA gene from Agrobacterium rhizogenes: interactions with gibberellic acid and polyamine metabolism. Physologia Plantarum 96:237–243

    Article  CAS  Google Scholar 

  71. Ben-Hayyim G, Damon JP, Martin-Tanguy J, Tepfer D (1994) Changing root system architecture through inhibition of putrescine and feruloyl putrescine accumulation. FEBS Lett 342(2):145–148

    Article  CAS  Google Scholar 

  72. Sun LY, Monneuse MO, Martin-Tanguy J, Tepfer D (1991) Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 80:145–156

    Article  CAS  Google Scholar 

  73. Burtin D, Martin-Tanguy J, Tepfer D (1991) α-DL-Difluoromethylornithine, a specific, irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root-Inducing, left-hand transferred DNA of Agrobacterium rhizogenes. Plant Physiol 95(2):461–468

    Article  CAS  Google Scholar 

  74. Martin-Tanguy J, Tepfer D, Paynot M, Burtin D, Heisler L, Martin C (1990) Inverse relationship between polyamine levels and the degree of phenotypic alteration induced by the root-inducing, left-hand transferred DNA from Agrobacterium rhizogenes. Plant Physiol 92(4):912–918

    Article  CAS  Google Scholar 

  75. Sinkar V, Pythoud F, White F, Nester E, Gordon M (1988) rol A locus of the Ri plasmid directs developmental abnormalities in transgenic plants. Genes Dev 2:688–698

    Article  CAS  Google Scholar 

  76. Sinkar V, White F, Furner I, Abrahamsen M, Pythoud F, Gordon M (1988) Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes. Plant Physiol 86:584–590

    Article  CAS  Google Scholar 

  77. Limami MA, Sun LY, Douat C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacterium rhizogenes. Annual flowering in two biennials, belgian endive and carrot. Plant Physiol 118(2):543–550

    Article  CAS  Google Scholar 

  78. Tepfer D, Zalar A, Leach S (2012) Survival of plant seeds, their UV screens, and nptII DNA for 18 months outside the International Space Station. Astrobiology 12(5):517–528

    Article  CAS  Google Scholar 

  79. Zalar A, Tepfer D, Hoffmann SV, Kollmann A, Leach S (2007) Directed exospermia: II. VUV-UV spectroscopy of specialized UV screens, including plant flavonoids, suggests using metabolic engineering to improve survival in space. I J Astrobiol 6(04):291–301

    CAS  Google Scholar 

  80. Zalar A, Tepfer D, Hoffmann SV, Kenney JM, Leach S (2007) Directed exospermia: I. Biological modes of resistance to UV light are implied through absorption spectroscopy of DNA and potential UV screens. I J Astrobiol 6(03):229–240

    Article  CAS  Google Scholar 

  81. Zalar A (2010) Resistance of Arabidopsis thaliana seeds exposed to monochromatic and simulated solare polychromatic UV radiation: Preparation for the EXPOSE space missions to the International Space Station (ISS). Université de Versailles Saint-Quentin-en-Yvelines

    Google Scholar 

  82. Jerling A, Burchell M, Tepfer D (2008) Survival of seeds in hypervelocity impacts. I J Astrobiol 7:217–222

    Article  Google Scholar 

  83. de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 99(4):2094–2099

    Article  CAS  Google Scholar 

  84. Link L, Sawyer J, Venkateswaran K, Nicholson W (2004) Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean spacecraft assembly facility. Microb Ecol 47(2):159–163

    Article  CAS  Google Scholar 

  85. Tepfer D (2008) The origin of life, panspermia and a proposal to seed the Universe. Plant Sci 175(6):756–760

    Article  CAS  Google Scholar 

  86. Crick FHC, Orgel LE (1973) Directed panspermia. Icarus 19:341–346

    Article  Google Scholar 

  87. Chaudhuri K, Das S, Bandyopadhyay M, Zalar A, Kollmann A, Jha S, Tepfer D (2009) Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation. Transgenic Res 18(1):121–134

    Article  CAS  Google Scholar 

  88. Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63(7):753–763

    Article  CAS  Google Scholar 

  89. Blakeslee AF, Avery AG (1937) Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28(12):393–411

    CAS  Google Scholar 

  90. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178(3):633–637

    CAS  Google Scholar 

  91. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31(1):107–133

    Article  CAS  Google Scholar 

  92. Tepfer D, Leach S (2006) Plant seeds as model vectors for the transfer of life through space. Astrophys Space Sci 306(1-2):69–75

    Article  CAS  Google Scholar 

  93. Tepfer D, Smeekens S, Lepri O (2000) Expect genetic engineering of plants in unexpected places. International Herald Tribune, 8 Feb, p 8

    Google Scholar 

  94. Lambert C, Thomas G, Leger D, Pamboukdjian N, Tepfer D (1988) Utilisation de la transformation génétique par Agrobacterium rhizogenes pour améliorer la rhizogénèse d’arbres fruitiers. In: 8e Colloque sur les recherches fruitières. INRA/CTIFL, Bordeaux, pp 176–183

    Google Scholar 

  95. Lambert C, Tepfer D (1991) Use of Agrobacterium rhizogenes to create chimeric apple trees through genetic grafting. Bio/Technology 9(1):80–83

    Article  Google Scholar 

  96. Strobel GA, Nachmias A (1985) Agrobacterium rhizogenes promotes the initial growth of bare root stock almond. J Gen Microbiol 131:1245–1249

    Google Scholar 

  97. Strobel G (1986) “Hairy root” bacterium shows horticultural promise. Am Nurseryman 163:77–85

    Google Scholar 

  98. Strobel GA, Nachmias A, Satouri S, Hess WH (1988) Improvements in the growth and yield of live trees by transformation with the Ri plasmid of A. rhizogenes. Can J Bot 66:2581–2585

    Article  Google Scholar 

  99. Metzger L, Fouchault I, Glad C, Prost R, Tepfer D (1992) Estimation of cadmium availability using transformed roots. Plant and Soil 143:249–257

    Article  CAS  Google Scholar 

  100. Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Article  Google Scholar 

  101. Becard G, Piche Y (1989) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112(1):77–83

    Article  Google Scholar 

  102. Balaji B, Ba AM, Larue TA, Tepfer D, Piché Y (1994) Pisum sativum mutants insensitive to nodulation are also insensitive to invasion in vitro by the mycorrhizal fungus, Gigaspora margarita. Plant Sci 102(2):195–203

    Article  Google Scholar 

  103. Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci 50:145–151

    Article  CAS  Google Scholar 

  104. Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Biotechnology 12(1):64–68

    Article  CAS  Google Scholar 

  105. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24(1):25–35

    Article  CAS  Google Scholar 

  106. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25(10):1059–1066

    Article  CAS  Google Scholar 

  107. Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  CAS  Google Scholar 

  108. Deni J, Message B, Chioccioli M, Tepfer D (2005) Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm, Manduca sexta. Transgenic Res 14(2):207–215

    Article  CAS  Google Scholar 

  109. Kostrzak A, Cervantes Gonzalez M, Guetard D, Nagaraju DB, Wain-Hobson S, Tepfer D, Pniewski T, Sala M (2009) Oral administration of low doses of plant-based HBsAg induced antigen-specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 27(35):4798–4807

    Article  CAS  Google Scholar 

  110. Dunning Hotopp J (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27(4):157–163

    Article  CAS  Google Scholar 

  111. Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340(6230):205–209

    Article  CAS  Google Scholar 

  112. Moran N, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 317(5845):624–627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The core research was performed at the Institut National de la Recherche Agronomique by Tepfer, D., Goldmann, A., Message, B., Pamboukdjian, N., and Maille, M. I am indebted to my collaborators for their hard work, dedication, and tolerance: Ackerman, C. Ba, A.M., Balaji, B., Bandyopadhyay, M., Ben-Hayyim, G., Blackhalla, N., Boivin, C., Bonnett, H., Bouchez, D., Broglie, R., Burchell, M., Burnet, M., Burtin, D., Casse-Delbart, F., Charbonnier, C., Charpin, I., Chaudhuri, K., Chevalier, D., Chilton, M.D., Chioccioli, M., Cocking, E., Damon, J.P., Das, S., Davey, M., David, C., Delepelaire, P., Dénarié, J., Deni, J., Devendra, B.N., Drong, R., Ducrot, P.H., Durand-Tardif, M., El Amrani, A., Elbein, A.D., Fosket, D., Garcia-Gonzales, R., Ghosh, B., Goldmann, A., Gonzaleza, M.C., Guetarda, D., Guyon, P., Heisler, L., Helgeson, J., Hoffmann, S.V., Corbineau, F., Jerling, A., Jha, S., Jouanin, L., Jung, G., Kenney, J., Kollmann, A., Kostrzak, A., Lallemand, J.Y., Lambert, C., Larue, T.A., Leach F., Leach, S., Lee, S.-H., Lépingle, A., Levesque, H., Limami A., Maille, M., Mansouri, H., Martin, C., Martin-Tanguy, J., Message, B., Metzger, L., Michael, A., Milat, M.L., Molyneux, R., Monneuse, M.O., Mugnier, J., Pamboukdjian, N., Pan, Y.T., Paynot, M., Pellegrineschi, A., Perica, M.C., Petit, A., Piche, Y., Pniewski, T., Power, B., Prost, R., Rosenberg, C., Rouzé, P., Sala M., Seruga, M., Slightom, J., Sun, L.Y., Tempé, J., Touraud, G., Wain-Hobson, S., Yacoub, A. For materials, moral support, and advice I am indebted to (among others) the following benefactors: Adholeya, A., Bevan, M., Bourgin, J.P., Chua, N.-H., Cambell, R., Crespin, M., de Vries, J., Descoins, C., Field, D., Grunstein, M., Helgeson, J., Horneck, G., Kemp, J., Maliga, P., Ohkawa, H., Rabbow, E., Schneiderman, H., Shields, R., Tempé, J., Tepfer, M., Tepfer, R., Tobin, E., Torrey, J., and Wackernagel, W. Support (partial list) came from CEFIPRA, the Rockefeller Foundation, the Universities of Oregon, Aarhaus, Kobe, Singapore and Zagreb, from INRA, the CNRS, ESA, the CNES, TERI, the DLR, and NATO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tepfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Tepfer, D. (2016). DNA Transfer to Plants by Agrobacterium rhizogenes: A Model for Genetic Communication Between Species and Biospheres. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27490-4_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27490-4_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-27490-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics