Skip to main content

Outlook of Aptamer-Based Smart Materials for Industrial Applications

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings

Abstract

“Smart” materials are advanced materials that are able to change their physical or chemical properties in response to external stimuli in their environment, and they are finding uses in industry such as in drug delivery, for example. By adding a molecular recognition probe to the material that is specific to a target of interest, these smart materials can become responsive to specific molecules or biomolecules. Aptamers are single-stranded oligonucleotides that fold into complex structures and bind their targets with high affinity and selectivity. Due to their stability and facile method of synthesis and labeling, DNA aptamers are well suited to incorporation in smart materials. The addition of aptamers into these advanced materials allows the material to gain functionality from target recognition, altering the properties of the material upon target binding. Aptamer-based smart materials bring together aptamer technology with materials science, producing multifunctional, advanced materials with tunable properties that could be applied to many facets of industry. This chapter will discuss current literature and patents pertaining to aptamer-based smart materials and discuss the applicability of these materials for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171. doi:10.1016/j

    Article  Google Scholar 

  2. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640. doi:10.1016/j.matdes.2011.04.065

    Article  Google Scholar 

  3. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668. doi:10.1002/adma.201003398

    Article  Google Scholar 

  4. Pardo R, Zayat M, Levy D (2011) Photochromic organic-inorganic hybrid materials. Chem Soc Rev 40:672–687. doi:10.1039/c0cs00065e

    Article  Google Scholar 

  5. Seeboth A, Ruhmann R, Mühling O (2010) Thermotropic and thermochromic polymer based materials for adaptive solar control. Materials (Basel) 3:5143–5168. doi:10.3390/ma3125143

    Article  Google Scholar 

  6. Mortimer RJ (2011) Electrochromic materials. Annu Rev Mater Sci 41:241–268. doi:10.1146/annurev.ms.16.080186.001153

    Article  Google Scholar 

  7. Scherer MRJ, Steiner U (2013) Efficient electrochromic devices made from 3D nanotubular gyroid networks. Nano Lett 13:3005–3010. doi:10.1021/nl303833h

    Article  Google Scholar 

  8. Seeboth A, Lötzsch D, Ruhmann R, Muehling O (2014) Thermochromic polymers–function by design. Chem Rev 114:3037–3068. doi:10.1021/cr400462e

    Article  Google Scholar 

  9. Kline WM, Lorenzini G, Sotzing GA (2014) A review of organic electrochromic fabric devices. Coloration Technol 130(2):73–80. doi:10.1111/cote.12079

    Article  Google Scholar 

  10. Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399. doi:10.1002/adma.201201521

    Article  Google Scholar 

  11. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21. doi:10.1088/0964-1726/16/3/R01

    Article  Google Scholar 

  12. Pan C, Li Z, Guo W, Zhu J, Wang ZL (2011) Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angew Chem Int Ed 50:11192–11196. doi:10.1002/anie.201104197

    Article  Google Scholar 

  13. Chi Z, Xu Q (2014) Recent advances in the control of piezoelectric actuators. Int J Adv Robot Syst 11:1–11. doi:10.5772/59099

    Article  Google Scholar 

  14. The Institute of Materials MAM Materials Foresight – Smart materials for the 21st century (http://www.iom3.org/smart-materials-systems-committee/smart-materials-systems-foresight) Accessed March 2015.

    Google Scholar 

  15. Ruigrok VJB, Levisson M, Eppink MHM, Smidt H, van der Oost J (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13. doi:10.1042/BJ20101860

    Article  Google Scholar 

  16. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452. doi:10.1021/ac201057w

    Article  Google Scholar 

  17. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  Google Scholar 

  18. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi:10.1038/346183a0

    Article  Google Scholar 

  19. Cibiel A, Dupont DM, Ducongé F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4:1216–1235. doi:10.3390/ph4091216

    Article  Google Scholar 

  20. Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013) Selection and characterization of aptamers against salmonella typhimurium using whole-bacterium systemic evolution of Ligands by exponential enrichment (SELEX). J Agric Food Chem 61:3229–3234. doi:10.1021/jf400767d

    Article  Google Scholar 

  21. Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou S (2015) Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. doi:10.7150/thno.10202

    Google Scholar 

  22. Yoshida R, Okano T (2010) Stimuli-responsive hydrogels and their application to functional materials. In: Biomedical applications of hydrogels handbook. pp 19–43. doi:10.1007/978-1-4419-5919-5

    Google Scholar 

  23. Caló E, Khutoryanskiy VV (2014) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. doi:10.1016/j.eurpolymj.2014.11.024

    Article  Google Scholar 

  24. Yang H, Liu H, Kang H, Tan W (2008) Engineering target-responsive hydrogels based on aptamer-target interactions. J Am Chem Soc 130:6320–6321. doi:10.1021/ja801339w

    Article  Google Scholar 

  25. Galli C, Macaluso GM (2014) Biomedical device implantable in bone and/or cartilaginous tissue, and corresponding method to manufacture said biomedical device

    Google Scholar 

  26. DeLouise L, Bonanno L. Hybrid target analyte responsive polymer sensor with optical amplification

    Google Scholar 

  27. Wang Y, Soontornworajit B, Chen N (2013) Affinity hydrogels for controlled protein release

    Google Scholar 

  28. Hyde RA, Ishikawa MY, Jung EKY, Langer R, Leuthardt EC, Myhrvold NP, Sweeney EA, Wood LL Jr (2013) Device, system, and method for controllably reducing inflammatory mediators in a subject

    Google Scholar 

  29. (2013) Colloidal crystal gel label-free visual detection method with aptamer as identification unit

    Google Scholar 

  30. Wang Y, Zhang Z, Chen N, Li S (2013) Affinity-based materials for the non-destructive separation and recovery of cells

    Google Scholar 

  31. Zion TC, Lancaster TM (2013) Polynucleotide aptamer-based cross-linked materials and uses thereof

    Google Scholar 

  32. Aizenberg J, He X, Aizenberg M (2013) Self-regulating chemo-mechano-chemical systems

    Google Scholar 

  33. Luo D, Roh YH (2012) Photo-crosslinked nucleic acid hydrogels

    Google Scholar 

  34. Benkoski JJ, Mason AF, Baird LM, Sample JL (2010) Triggered drug release via physiologically responsive polymers

    Google Scholar 

  35. Strano MS, Barone PW (2010) Systems and methods using photoluminescent nanostructure based hydrogels

    Google Scholar 

  36. Tan W, Huanghao Y, Liu H (2009) Target-responsive hydrogels

    Google Scholar 

  37. Daunert S, Deo SK, Ehrick JD, Browning TW, Bachas LG (2009) Apparatus comprising a protein integrated hydrogel polymer which undergoes conformational transition in the presence of a target molecule

    Google Scholar 

  38. Mark B, Siddarth V, Jacek W (2008) Drug delivery system and method

    Google Scholar 

  39. Madou M, Bachas L, Daunert S (2002) Microarray for use in the detection of preferential particles in solution

    Google Scholar 

  40. Wei B, Cheng I, Luo KQ, Mi Y (2008) Capture and release of protein by a reversible DNA-induced sol-gel transition system. Angew Chem Int Ed 47:331–333. doi:10.1002/anie.200704143

    Article  Google Scholar 

  41. El-Hamed F, Dave N, Liu J (2011) Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology 22:494011. doi:10.1088/0957-4484/22/49/494011

    Article  Google Scholar 

  42. Soontornworajit B, Zhou J, Wang Y (2010) A hybrid particle–hydrogel composite for oligonucleotide-mediated pulsatile protein release. Soft Matter 6:4255. doi:10.1039/c0sm00206b

    Article  Google Scholar 

  43. Battig MR, Soontornworajit B, Wang Y (2012) Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 134:12410–12413. doi:10.1021/ja305238a

    Article  Google Scholar 

  44. He X, Wei B, Mi Y (2010) Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem Commun (Camb) 46:6308–6310. doi:10.1039/c0cc01392g

    Article  Google Scholar 

  45. Wu C, Wan S, Hou W, Zhang L, Xu J, Cui C, Wang Y, Hu J, Tan W (2015) A survey of advancements in nucleic acid-based logic gates and computing for applications in biotechnology and biomedicine. Chem Commun 51:3723–3734. doi:10.1039/C4CC10047F

    Article  Google Scholar 

  46. Yoshida W, Yokobayashi Y (2007) Photonic Boolean logic gates based on DNA aptamers. Chem Commun (Camb) 9:195–197. doi:10.1039/b613201d

    Article  Google Scholar 

  47. Liu Y, Ren J, Qin Y, Li J, Liu J, Wang E (2012) An aptamer-based keypad lock system. Chem Commun 48:802. doi:10.1039/c1cc15979h

    Article  Google Scholar 

  48. Xu X, Zhang J, Yang F, Yang X (2011) Colorimetric logic gates for small molecules using split/integrated aptamers and unmodified gold nanoparticles. Chem Commun (Camb) 47:9435–9437. doi:10.1039/c1cc13459k

    Article  Google Scholar 

  49. You M, Zhu G, Chen T, Donovan MJ, Tan W (2015) Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy

    Google Scholar 

  50. Zhu C-L, Song X-Y, Zhou W-H, Yang H-H, Wen Y-H, Wang X-R (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19:7765. doi:10.1039/b907978e

    Article  Google Scholar 

  51. Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, Huang W, Zuo X (2015) Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron 65:171–175. doi:10.1016/j.bios.2014.10.031

    Article  Google Scholar 

  52. (2014) Electroluminescence logic gate adopting adenosine monophosphate and adenosine deaminase as excimers

    Google Scholar 

  53. Seelig G, Lutz B (2013) Systems and methods for detecting biomarkers of interest

    Google Scholar 

  54. Stojanovic MN (2003) Oligonucleotide-based logic gates and molecular networks

    Google Scholar 

  55. Sen D, Fahlman RP (2011) DNA conformational switches as sensitive electronic sensors of analytes

    Google Scholar 

  56. Yin B-C, Ye B-C, Wang H, Zhu Z, Tan W (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun 48:1248. doi:10.1039/c1cc15639j

    Article  Google Scholar 

  57. Jiang Y, Liu N, Guo W, Xia F, Jiang L (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134:15395–15401. doi:10.1021/ja3053333

    Article  Google Scholar 

  58. Abelow AE, Schepelina O, White RJ, Vallée-Bélisle A, Plaxco KW, Zharov I (2010) Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem Commun (Camb) 46:7984–7986. doi:10.1039/c0cc02649b

    Article  Google Scholar 

  59. Schäfer T, Özalp VC (2015) DNA-aptamer gating membranes. Chem Commun. doi:10.1039/C4CC09660F

    Google Scholar 

  60. Zhu X, Zhang B, Ye Z, Shi H, Shen Y, Li G (2015) An ATP-responsive smart gate fabricated with a graphene oxide–aptamer–nanochannel architecture. Chem Commun 51:640–643. doi:10.1039/C4CC07990F

    Article  Google Scholar 

  61. Wang R, Xu L, Li Y (2015) Bio-nanogate controlled enzymatic reaction for virus sensing. Biosens Bioelectron 67:400–407. doi:10.1016/j.bios.2014.08.071

    Article  Google Scholar 

  62. Zhu CL, Lu CH, Song XY, Yang HH, Wang XR (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133:1278–1281. doi:10.1021/ja110094g

    Article  Google Scholar 

  63. Ozalp VC, Eyidogan F, Oktem HA (2011) Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 4:1137–1157. doi:10.3390/ph4081137

    Article  Google Scholar 

  64. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  Google Scholar 

  65. Bachelet I, Church G, Douglas S (2012) DNA origami devices

    Google Scholar 

  66. Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A, Bachelet I (2014) Universal computing by DNA origami robots in a living animal. Nat Nanotechnoli 9:353–357. doi:10.1038/nnano.2014.58

    Article  Google Scholar 

  67. Izquierdo A, Ono SS, Voegel JC, Schaaf P, Decher G (2005) Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21:7558–7567. doi:10.1021/la047407s

    Article  Google Scholar 

  68. Jansen JA, Nolte RJM, Sommerdijk NAJ, Walboomers XF, Van DBJJ, Vos MR-J (2006) DNA-based coatings for implants

    Google Scholar 

  69. Borbely J, Bodnar M, Hajdu I, Hartman JF, Keresztessy Z, Nagy L, Vamosii G (2009) Polymeric nanoparticles by ion-ion interactions

    Google Scholar 

  70. Winterton LC, Vogt J, Lally JM, Stockinger F (1999) Coating of Polymers.

    Google Scholar 

  71. Claus RO, Liu Y (2001) Transparent abrasion-resistant coatings, magnetic coatings, and UV absorbing coatings on solid substrates

    Google Scholar 

  72. Sultan Y, Walsh R, Monreal C, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromolecules 10:1149–1154. doi:10.1021/bm8014126

    Article  Google Scholar 

  73. Sultan Y, DeRosa MC (2011) Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small 7:1219–1226. doi:10.1002/smll.201001186

    Article  Google Scholar 

  74. Chen L, Zeng X, Ferhan AR, Chi Y, Kim D-H, Chen G (2015) Signal-on electrochemiluminescent aptasensors based on target controlled permeable films. Chem Commun 51:1035–1038. doi:10.1039/C4CC07699K

    Article  Google Scholar 

  75. Zhang X, Chabot D, Sultan Y, Monreal C, Derosa MC (2013) Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS Appl Mater Interfaces 5:5500–5507. doi:10.1021/am400668q

    Article  Google Scholar 

  76. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11:499–507. doi:10.1038/nmeth.2918

    Article  Google Scholar 

  77. Foster A, DeRosa MC (2014) Development of a biocompatible layer-by-layer film system using aptamer technology for smart material applications. Polymers (Basel) 6:1631–1654. doi:10.3390/polym6051631

    Article  Google Scholar 

  78. Brüggemann D (2013) Nanoporous aluminium oxide membranes as cell interfaces. J Nanomater. doi:10.1155/2013/460870

    Google Scholar 

  79. Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35:1816–1832. doi:10.1016/j.biomaterials.2013.11.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. DeRosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mastronardi, E., DeRosa, M.C. (2016). Outlook of Aptamer-Based Smart Materials for Industrial Applications. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_9

Download citation

Publish with us

Policies and ethics