Skip to main content

Functions of Bioactive and Intelligent Natural Polymers in the Optimization of Drug Delivery

  • Chapter
  • First Online:
Book cover Industrial Applications for Intelligent Polymers and Coatings

Abstract

Bioactive polymers, by their structural configuration and conformation, possess the ability to exert biological activities and consequently elicit responses from cells and tissues. Intelligent polymers are smart polymers which respond to internal and external stimuli in order to propel the release or modify the release of drugs. Natural polymers are biogenic, biocompatible, biodegradable, and safe for consumption. Consequently, they present as suitable materials that the human body can identify with and not treat as foreign bodies, thereby reducing the complications encountered when dealing with synthetic polymers. Natural polymers have been shown to be bioactive, exhibiting biological activities such as antitumor, anticoagulant, antioxidant, antimicrobial, antiulcer, anti-inflammatory, and antirheumatic. In addition, natural polymers are meritorious materials for the fabrication of self-regulated or externally regulated drug delivery systems. These systems respond to the state of the environment for efficacious therapy. Drug delivery technology is shifting from the controlled release of drugs over time to the release of drugs when and where needed, especially for chronic diseases. Indeed, intelligent polymers are choice polymers for such delivery systems. Their synthetic counterparts were actually synthesized to mimic these natural polymers which further buttress the need to revert to nature for intelligent and bioactive polymers. The contexts of natural bioactive and intelligent polymers have unique applications in drug delivery, embracing nanobiotechnology. This would ultimately benefit drug delivery systems in benchmarking new drug formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ngwuluka NC, Ochekpe NA, Aruoma OI (2014) Polymers 6:1312–1332

    Article  Google Scholar 

  2. Ngwuluka NC, Ochekpe N (2015) In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis, New York, NY, 11 volume set

    Google Scholar 

  3. Sullivan R, Smith JE, Rowan NJ (2006) Perspect Biol Med 49:159–170

    Article  Google Scholar 

  4. Taguchi T, Furue H, Kimura T, Kondo T, Hattori T, Itoh I et al (1985) Gan To Kagaku Ryoho 12:366–378

    Google Scholar 

  5. Kidd PM (2000) Altern Med Rev 5:4–27

    Google Scholar 

  6. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Proc Soc Exp Biol Med 221:281–293

    Article  Google Scholar 

  7. Kimura Y, Tojima H, Fukase S, Takeda K (1994) Acta Otolaryngol 114:192–195

    Article  Google Scholar 

  8. Niimoto M, Hattori T, Tamada R, Sugimachi K, Inokuchi K, Ogawa N (1988) Jpn J Surg 18:681–686

    Article  Google Scholar 

  9. Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J, Nakazato H et al (1994) The Lancet 343:1122–1126

    Article  Google Scholar 

  10. Okudaira Y, Sugimachi K, Inokuchi K, Kai H, Kuwano H, Matsuura H (1982) Jpn J Surg 12:249–256

    Article  Google Scholar 

  11. Ogoshi K, Satou H, Isono K, Mitomi T, Endoh M, Sugita M (1995) Cancer Invest 13:363–369

    Article  Google Scholar 

  12. Go P, Chung C (1989) J Int Med Res 17:141–149

    Google Scholar 

  13. Torisu M, Hayashi Y, Ishimitsu T, Fujimura T, Iwasaki K, Katano M et al (1990) Cancer immunology. Immunotherapy 31:261–268

    Article  Google Scholar 

  14. Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K et al (1992) Dis Colon Rectum 35:123–130

    Article  Google Scholar 

  15. Si-Iiojima SKK, Furuta M, Niibe H (1993) Anticancer Res 13:1815–1820

    Google Scholar 

  16. Liu J, Zhou J (1993) Anonymous PSP international symposium, Fudan University Press, Hong Kong, pp 183

    Google Scholar 

  17. Sun Z, Yang Q, Fei H (1999) In: Yang, Q. (ed), Advanced Research in PSP. Hong Kong Association for Health Care Ltd., Hong Kong, pp. 304–307.

    Google Scholar 

  18. Gonzaga MLC, Bezerra DP, Alves APNN, de Alencar NMN, de Oliveira Mesquita R, Lima MW et al (2009) J Nat Med 63:32–40

    Article  Google Scholar 

  19. Yan J, Wang W, Li L, Wu J (2011) Carbohydr Polym 85:753–758

    Article  Google Scholar 

  20. Li N, Li L, Fang JC, Wong JH, Ng TB, Jiang Y et al (2012) Biosci Rep 32:221–228

    Article  Google Scholar 

  21. Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Aiyama R, Ueyama S et al (2000) Biofactors 12:267

    Article  Google Scholar 

  22. Han S, Lee CW, Kang MR, Yoon YD, Kang JS, Lee KH et al (2006) Cancer Lett 243:264–273

    Article  Google Scholar 

  23. Zong A, Cao H, Wang F (2012) Carbohydr Polym 90:1395–1410

    Article  Google Scholar 

  24. Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher A et al (1999) Carbohydr Res 319:154–165

    Article  Google Scholar 

  25. Dobashi K, Nishino T, Fujihara M, Nagumo T (1989) Carbohydr Res 194:315–320

    Article  Google Scholar 

  26. Colliec S, Fischer A, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J (1991) Thromb Res 64:143–154

    Article  Google Scholar 

  27. Cáceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zúñiga EA (2000) Phytochemistry 53:81–86

    Article  Google Scholar 

  28. de Souza MCR, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL (2007) J Appl Phycol 19:153–160

    Article  Google Scholar 

  29. Huang Y, Li R (2014) Mar Drugs 12:4379–4398

    Article  Google Scholar 

  30. Rupérez P, Ahrazem O, Leal JA (2002) J Agric Food Chem 50:840–845

    Article  Google Scholar 

  31. Wang J, Zhang Q, Zhang Z, Li Z (2008) Int J Biol Macromol 42:127–132

    Article  Google Scholar 

  32. Kim S, Choi D, Athukorala Y, Jeon Y, Senevirathne M, Rha CK (2007) J Food Sci Nutr 12:65–73

    Article  Google Scholar 

  33. Wijesekara I, Pangestuti R, Kim S (2011) Carbohydr Polym 84:14–21

    Article  Google Scholar 

  34. Lauder RM (2009) Complement Ther Med 17:56–62

    Article  Google Scholar 

  35. Vergés J, Montell E, Herrero M, Perna C, Cuevas J, Dalmau J et al (2005) Dermatol Online J 11:31

    Google Scholar 

  36. Hori Y, Hoshino J, Yamazaki C, Sekiguchi T, Miyauchi S, Horie K (2001) Jpn J Pharmacol 85:155–160

    Article  Google Scholar 

  37. Dumelod BD, Ramirez RPB (1999) Int J Food Sci Nutr 50:283

    Article  Google Scholar 

  38. Jang JS, Lee JS, Lee JH, Kwon DS, Lee KE, Lee SY et al (2010) Arch Pharm Res 33:853–861

    Article  Google Scholar 

  39. Smit AJ (2004) J Appl Phycol 16:245–262

    Article  Google Scholar 

  40. Witvrouw M, De Clercq E (1997) Gen Pharmacol Vascular Syst 29:497–511

    Article  Google Scholar 

  41. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Glycobiology 19:2–15

    Article  Google Scholar 

  42. Bo S, Muschin T, Kanamoto T, Nakashima H, Yoshida T (2013) Carbohydr Polym 94(2):899–903

    Article  Google Scholar 

  43. Jeon K, Katsuraya K, Inazu T, Kaneko Y, Mimura T, Uryu T (2000) J Am Chem Soc 122:12536–12541

    Article  Google Scholar 

  44. Hirano S, Nagao N (1989) Agric Biol Chem 53:3065–3066

    Google Scholar 

  45. Jeon Y, Park P, Kim S (2001) Carbohydr Polym 44:71–76

    Article  Google Scholar 

  46. Volod’ko AV, Davydova VN, Chusovitin E, Sorokina IV, Dolgikh MP, Tolstikova TG et al (2014) Carbohydr Polym 101:1087–1093

    Article  Google Scholar 

  47. Shibata H, Kimura-Takagi I, Aiyama R, Nagaoka M, Ueyama S, Yokokura T et al (2000) Biofactors 11:235

    Article  Google Scholar 

  48. Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD (2003) Asia Pac J Clin Nutr 12:209–214

    Google Scholar 

  49. Tsuge K, Okabe M, Yoshimura T, Sumi T, Tachibana H, Yamada K (2004) Food Sci Technol Res 10:147–151

    Article  Google Scholar 

  50. Pengzhan Y, Quanbin Z, Ning L, Zuhong X, Yanmei W, Zhi’en L (2003) J Appl Phycol 15:21–27

    Article  Google Scholar 

  51. Onishi T, Umemura S, Yanagawa M, Matsumura M, Sasaki Y, Ogasawara T et al (2008) Arch Oral Biol 53:257–260

    Article  Google Scholar 

  52. Gazi MI (1991) J Clin Periodontol 18:75–77

    Article  Google Scholar 

  53. Clark DT, Gazl MI, Cox SW, Eley BM, Tinsley GF (1993) J Clin Periodontol 20:238–243

    Article  Google Scholar 

  54. Moon HJ, Lee SR, Shim SN, Jeong SH, Stonik VA, Rasskazov VA et al (2008) Biol Pharm Bull 31:284–289

    Article  Google Scholar 

  55. Armisen R, Galatas F (1987) In: McHugh DJ (ed) Production and utilization of products from commercial seaweeds, vol 288., pp 1–57

    Google Scholar 

  56. Wu J, Ding X (2001) J Agric Food Chem 49:501–506

    Article  Google Scholar 

  57. Ardizzoni A, Neglia R, Baschieri M, Cermelli C, Caratozzolo M, Righi E et al (2011) J Mater Sci Mater Med 22:2329–2338

    Article  Google Scholar 

  58. Liu M, Wu K, Mao X, Wu Y, Ouyang J (2010) J Ethnopharmacol 127:32–37

    Article  Google Scholar 

  59. Lu J, Chen X, Zhang Y, Xu J, Zhang L, Li Z et al (2013) Int J Mol Med 31:1463–1470

    Google Scholar 

  60. Cheng Y, Tang K, Wu S, Liu L, Qiang C, Lin X et al (2011) PLoS One 6, e27437

    Article  Google Scholar 

  61. Dai H, Jia G, Liu X, Liu Z, Wang H (2014) Environ Toxicol Pharmacol 38:263–271

    Article  Google Scholar 

  62. da Silva BP, Parente JP (2003) Carbohydr Polym 51:239–242

    Article  Google Scholar 

  63. Nakashima H, Yoshida O, Baba M, De Clercq E, Yamamoto N (1989) Antiviral Res 11:233–246

    Article  Google Scholar 

  64. Coombe DR, Harrop HA, Watton J, Mulloy B, Barrowcliffe TW, Rider CC (1995) AIDS Res Hum Retroviruses 11:1393–1396

    Article  Google Scholar 

  65. Guzdek A, Rokita H (1997) Mediators Inflamm 6:58–63

    Article  Google Scholar 

  66. Delattre C, Fenoradosoa TA, Michaud P (2011) Braz Arch Biol Technol 54:1075–1092

    Google Scholar 

  67. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) J Nat Prod 59:83–87

    Article  Google Scholar 

  68. Pujol C, Matulewicz M, Cerezo A, Damonte E (1998) Phytomedicine 5:205–208

    Article  Google Scholar 

  69. Maji PK, Sen IK, Devi KSP, Maiti TK, Sikdar SR, Islam SS (2013) Carbohydr Res 368:22–28

    Article  Google Scholar 

  70. Yoo S, Yoon EJ, Cha J, Lee HG (2004) Int J Biol Macromol 34:37–41

    Article  Google Scholar 

  71. Liu J, Luo J, Ye H, Zeng X (2012) Food Chem Toxicol 50:767–772

    Article  Google Scholar 

  72. Giavasis I (2014) Curr Opin Biotechnol 26:162–173

    Article  Google Scholar 

  73. Shingel KI (2004) Carbohydr Res 339:447–460

    Article  Google Scholar 

  74. Zhong K, Wang Q, He Y, He X (2010) Int J Biol Macromol 47:356–360

    Article  Google Scholar 

  75. Recuenco FC, Kobayashi K, Ishiwa A, Enomoto-Rogers Y, Fundador NGV, Sugi T et al (2014) Scientific Rep 4:4723

    Google Scholar 

  76. Panilaitis B, Johri A, Blank W, Kaplan D, Fuhrman J (2002) Clin Diagn Lab Immunol 9:1240–1247

    Google Scholar 

  77. de Oliveira AJB, Cordeiro LM, Gonçalves RAC, Ceole LF, Ueda-Nakamura T, Iacomini M (2013) Carbohydr Polym 94:179–184

    Article  Google Scholar 

  78. Evans T (2002) Aliment Pharmacol Ther 16:6–11

    Article  Google Scholar 

  79. Liao W-R, Lin J-Y, Shieh W-Y, Jeng W-L, Huang R (2003) J Ind Microbiol Biotechnol 30:433

    Article  Google Scholar 

  80. Teixeira EH, Arruda FVS, do Nascimento KS, Carneiro VA, Nagano CS, da Silva BR et al (2012) In: Chang C-F (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. InTech, Croatia, pp 533–558

    Google Scholar 

  81. Mitsumata T, Suemitsu Y, Fujii K, Fujii T, Taniguchi T, Koyama K (2003) Polymer 44:7103–7111

    Article  Google Scholar 

  82. Aiedeh K, Taha MO (1999) Arch Pharm (Weinheim) 332:103–107

    Article  Google Scholar 

  83. Huang Y, Lam U (2011) J Chin Chem Soc 58:779–785

    Article  Google Scholar 

  84. Ngwuluka NC, Choonara YE, Modi G, du Toit LC, Kumar P, Ndesendo VM et al (2013) AAPS PharmSciTech 14:605–619

    Article  Google Scholar 

  85. Lee SJ, Park K (1996) J Mol Recognit 9:549–557

    Article  Google Scholar 

  86. Brownlee M, Cerami A (1979) Science 206:1190–1191

    Article  Google Scholar 

  87. Jeong SY, Kim SW, Holmberg DL, McRea JC (1985) J Control Release 2:143–152

    Article  Google Scholar 

  88. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) J Control Release 103:609–624

    Article  Google Scholar 

  89. Zhang Y, Gao C, Li X, Xu C, Zhang Y, Sun Z et al (2014) Carbohydr Polym 101:171–178

    Article  Google Scholar 

  90. Ying L, Jiali S, Jiang G, Jia Z, Fuxin D (2007) Chin J Chem Eng 15:566–572

    Article  Google Scholar 

  91. Bhattarai N, Gunn J, Zhang M (2010) Adv Drug Deliv Rev 62:83–99

    Article  Google Scholar 

  92. Chen J, Cheng T (2009) Polymer 50:107–116

    Article  Google Scholar 

  93. Fundueanu G, Constantin M, Ascenzi P (2008) Biomaterials 29:2767–2775

    Article  Google Scholar 

  94. Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D (2001) Int J Pharm 229:29–36

    Article  Google Scholar 

  95. Kim SJ, Shin SR, Lee JH, Lee SH, Kim SI (2003) J Appl Polym Sci 90:91–96

    Article  Google Scholar 

  96. Sun S, Mak AF (2001) J Polym Sci B 39:236–246

    Article  Google Scholar 

  97. Rozier A, Mazuel C, Grove J, Plazonnet B (1997) Int J Pharm 153:191–198

    Article  Google Scholar 

  98. Rozier A, Mazuel C, Grove J, Plazonnet B (1989) Int J Pharm 57:163–168

    Article  Google Scholar 

  99. Itoh K, Yahaba M, Takahashi A, Tsuruya R, Miyazaki S, Dairaku M et al (2008) Int J Pharm 356:95–101

    Article  Google Scholar 

  100. Gao X, Matsui H (2005) Adv Mater 17:2037–2050

    Article  Google Scholar 

  101. Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Angew Chem Int Ed 40:988–1011

    Article  Google Scholar 

  102. Fernandez-Lopez S (2001) Nature 412:452

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndidi C. Ngwuluka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ngwuluka, N.C., Ochekpe, N.A., Aruoma, O.I. (2016). Functions of Bioactive and Intelligent Natural Polymers in the Optimization of Drug Delivery. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_8

Download citation

Publish with us

Policies and ethics