Skip to main content

Smart Textile Transducers: Design, Techniques, and Applications

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings

Abstract

Smart textiles are emerging technologies with numerous applications and technical advantages. These are textiles which have undergone alteration in order to be utilized as sensors, actuators, and/or other types of transducers. Sensing and actuation features can be imparted to fabric substrates by applying intelligent coatings such that they will be sensitive and/or reactive to more than one type of stimulus, (e.g., chemical or physical). Smart coating polymers applied to fabrics include inherently conductive, semiconductive, and particle-doped polymers. These coatings can be piezoresistive, magnetoresistive, piezoelectric, photochromic, and sensitive to chemicals, gases, changes in humidity, and temperature, among others. In this chapter, an overview of the smart textile transducer elements, textile platforms, application techniques, and construction methods will be presented. Multiple applications have been inspired by the lightweight and compliant characteristics of smart textiles: industrial (i.e., uniforms), aerospace (i.e., space suit liners), military (i.e., soldier gear), and medical (i.e., patient garments), among others. These applications will define the current development of smart textile technologies and will be further discussed in this chapter. Furthermore, design principles and challenges associated to coating technologies as applied to textiles including surface treatment for strong adhesion, durability, and environmental/mechanical constraints are introduced. Future trends will arise from the integration of novel technologies into portable platforms with intelligent polymer coatings, alongside development of wearable technologies for fast input/data processing and streamlined user interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castano LM, Flatau AB (2014) IOP Smart Mater Structures 23:053001

    Article  Google Scholar 

  2. Schwartz P (2008) Structure and mechanics of textile fibre assemblies. Elsevier, Boca Raton, FL

    Book  Google Scholar 

  3. Shijian L, Van Ooij WJ (2002) J Adhes Sci Technol 16:1715–1735

    Article  Google Scholar 

  4. Tracton A (2006) Coatings technology handbook, 3rd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  5. Niu C et al (1997) Appl Phys Lett 70:1480–1482

    Article  Google Scholar 

  6. Célino A, Fréour S, Jacquemin F, Casari P (2013) Front Chem 1:43

    Google Scholar 

  7. Thermochromic sensing fibers, Commonwealth Scientific and Industrial Research Organization (CSIRO). Available from http://www.csiro.au/en/Research/MF/Areas/Chemicals-and-fibres/Advanced-fibres/Smart-clothing-and-textiles/Smart-bandages-reveal-healing. Accessed 20 Dec 2015

  8. Zysset C et al (2013) Opt Express 21:3213–3224

    Article  Google Scholar 

  9. Castano LM (2010) Smart fabric sensors for foot motion monitoring. Thesis, University of Maryland, College Park

    Google Scholar 

  10. Gao Y, Zheng Y, Diao S, Toh WD, Ang CW, Je M, Heng CH (2011) IEEE Trans Biomed Eng 58:768–772

    Article  Google Scholar 

  11. Adanur S (1995) Wellington sears handbook of industrial textiles. Lancaster, Philadelphia

    Google Scholar 

  12. Chen Z, Cottrell B, Wong W (2002) Eng Fract Mech 69:597–603

    Article  Google Scholar 

  13. Jinming H, Liu S (2010) Macromolecules 43:8315–8330

    Article  Google Scholar 

  14. Meyer J, Arnrich B, Schumm J, Troster G (2010) IEEE Sens J 10:1391–1398

    Article  Google Scholar 

  15. Post ER, Orth M, Russo PR, Gershenfeld N (2000) IBM Syst J 39:840–860

    Article  Google Scholar 

  16. Sergio M, Manaresi N, Campi F, Canegallo R, Tartagni M, Guerrieri R (2003) IEEE J Solid-State Circuits 38:966–975

    Article  Google Scholar 

  17. Hui Z, Ming TX, Xi YT, Sheng LX (2006) Pressure sensing fabric. Materials Research Society, Symposium Proceedings, Smart Nanotextiles, 920:113–119

    Google Scholar 

  18. Shimojo M, Namiki A, Ishikawa M, Makino R, Mabuchi K (2004) IEEE Sens J 4:589–596

    Article  Google Scholar 

  19. Bloor D, Graham A, Williams EJ, Laughlin PJ, Lussey D (2006) Appl Phys Lett 88:102103

    Article  Google Scholar 

  20. Mohammad I, Huang H (2012) Pressure and shear sensing based on microstrip antennas. Proceedings of the SPIE sensors and smart structures technologies for civil, mechanical, and aerospace systems, San Diego, CA

    Google Scholar 

  21. Yang W, Torah R, Yang K, Beeby S, Tudor J (2012) A novel fabrication process to realize piezoelectric cantilever structures for smart fabric sensor applications. IEEE Sensors Conference, Taipei, Taiwan

    Google Scholar 

  22. Rothmaier M, Luong M, Clemens F (2008) Sensors 8:4318–4329

    Article  Google Scholar 

  23. Dashti M, Mokhtari J, Nouri M, Shirini F (2012) J Appl Polym Sci 124:3007–3012

    Article  Google Scholar 

  24. Pacelli M, Caldani L, Paradiso R (2006) Textile piezoresistive sensors for biomechanical variables monitoring. 28th Annual international conference of the IEEE engineering in medicine and biology society EMBS, New York City, NY

    Google Scholar 

  25. Huang CT, Shen CL, Tang CF, Chang SH (2008) Sens Actuators A Phys 141:396–403

    Article  Google Scholar 

  26. Witt J et al (2012) IEEE Sens J 12:246–254

    Article  Google Scholar 

  27. Daoud WA, Xin JH, Szeto YS (2005) Sens Actuators B Chem 109:329–333

    Article  Google Scholar 

  28. Kim H, Kim Y, Kwon Y, Yoo H (2008) A 1.12mW continuous healthcare monitor chip integrated on a planar-fashionable circuit board. Digest of Technical Papers. IEEE International Solid-State Circuits Conference (ISSCC), Philadelphia, PA

    Google Scholar 

  29. Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010) Talanta 82:1338–1343

    Article  Google Scholar 

  30. Yang YL et al (2010) Analyst 135:1230–1234

    Article  Google Scholar 

  31. Bai H, Shi G (2007) Sensors 7:267–307

    Article  Google Scholar 

  32. Samsonidze G, Ribeiro FJ, Cohen ML, Louie SG (2014) Phys Rev B 90:035123

    Article  Google Scholar 

  33. Liu C, Qin H, Mather PT (2007) J Mater Chem 17:1543–1558

    Article  Google Scholar 

  34. Hammes PCA, Regtien PPL (1992) Sens Actuators A Phys 32:396–402

    Article  Google Scholar 

  35. Jefferson C, Dodani SC, Chang CJ (2012) Nat Chem 4:973–984

    Article  Google Scholar 

  36. Basudam A, Majumdar S (2004) Prog Polym Sci 29:699–766

    Article  Google Scholar 

  37. Sakai Y, Sadaoka Y, Matsuguchi M (1996) Sens Actuators B Chem 35:85–90

    Article  Google Scholar 

  38. Persaud KC (2005) Mater Today 8:38–44

    Article  Google Scholar 

  39. Peters K (2011) IOP Smart Mater Structures 20:013002

    Article  Google Scholar 

  40. Cho G, Jeong K, Paik MJ, Kwun Y, Sung M (2011) IEEE Sens J 11:3183–3193

    Article  Google Scholar 

  41. Carpi F, De Rossi D (2005) IEEE Trans Inf Technol Biomed 9:574

    Article  Google Scholar 

  42. Kim HK et al (2003) Mol Crystals Liquid Crystals 405:161–169

    Article  Google Scholar 

  43. Lang U, Rust P, Schoberle B, Dual J (2009) Microelectron Eng 86:330–334

    Article  Google Scholar 

  44. Martinez O, Bravos AG, Pinto N (2009) Macromolecules 42:7924–7929

    Article  Google Scholar 

  45. Cochrane C, Koncar V, Lewandowski M, Dufour C (2007) Sensors 7:473–492

    Article  Google Scholar 

  46. Oliva-Avilés AI, Avilés F, Sosa V (2011) Carbon 49:2989–2997

    Article  Google Scholar 

  47. Calvert P, Patra P, Sawhney A, Agrawal A, Duggal D (2007) Printed conducting polymer strain sensors for textiles. 23rd International conference on digital printing technologies, Anchorage, AK

    Google Scholar 

  48. Wang X, Ostblom M, Johansson T, Inganas O (2004) Thin Solid Films 449:125–132

    Article  Google Scholar 

  49. Okuzaki H, Harashina Y, Yan H (2009) Eur Polym J 45:256–261

    Article  Google Scholar 

  50. Lorussi F, Scilingo EP, Tesconi M, Tognetti A, De Rossi D (2005) IEEE Trans Inf Technol Biomed 9:372–381

    Article  Google Scholar 

  51. Li Y, Leung MY, Tao XM, Cheng XY, Tsang J, Yuen MCW (2005) J Mater Sci 40:4093–4095

    Article  Google Scholar 

  52. Wu J (2004) Synthesis, characterization and applications of conducting polymer coated textiles. Dissertation, University of Wollolong

    Google Scholar 

  53. Sawhney A, Agrawal A, Patra P, Calvert P (2006) Proc Mat Res Soc Symp Smart Nanotextiles 920:103–111

    Google Scholar 

  54. Menegazzo N et al (2012) Anal Chem 84:5770–5777

    Article  Google Scholar 

  55. Mujahid A, Lieberzeit PA, Dickert FL (2010) Materials 3:2196–2217

    Article  Google Scholar 

  56. Jin G, Norrish J, Too C, Wallace G (2004) Curr Appl Phys 4:366–369

    Article  Google Scholar 

  57. Yoshioka Y, Jabbour G (2006) Synth Met 156:779–783

    Article  Google Scholar 

  58. Boltau M, Walheim S, Mlynek J, Krausch G, Steiner U (1998) Nature 391:877–879

    Article  Google Scholar 

  59. Sen AK (2001) Coated textiles: principles and applications, 2nd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  60. Kim H, Kim Y, Kim B, Yoo HJ (2009) A wearable fabric computer by planar-fashionable circuit board technique. Sixth international workshop on wearable and implantable body sensor networks, Berkeley, CA

    Google Scholar 

  61. Bhowmick AK (2008) Current topics in elastomers research. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  62. Winterhalter CA, Teverovsky J, Wilson P, Slade J, Horowitz W, Tierney E, Sharma V (2005) IEEE Trans Inf Technol Biomed 9:402–406

    Article  Google Scholar 

  63. Institute for soldier nanotechnologies. Massachusetts Institute of Technology. Available from http://www.web.mit.edu/isn/. Accessed 20 Dec 2015

  64. BAE Broadsword soldier suite. BAE Systems. Available from http://www.baesystems.com. Accessed 20 Dec 2015

  65. Winterhalter CA, Teverovsky J, Horowitz W, Sharma V, Lee K (2004) Wearable electro-textiles for battlefield awareness. Army Natick Soldier Center MA Report ADA431955

    Google Scholar 

  66. Collins GE, Buckley LJ (1996) Synth Met 78:93–101

    Article  Google Scholar 

  67. Sahin O, Kayacan O, Bulgun Y (2005) Def Sci J 55:195–205

    Article  Google Scholar 

  68. Simon C, Potter E, McCabe M, Baggerman C (2010) Smart Fabrics Technology Development, NASA Innovation Fund Project, NASA Johnson Space Center Report

    Google Scholar 

  69. Ohmatex-Smart Textile Technology. Available from http://www.ohmatex.dk. Accessed 20 Dec 2015

  70. Axisa F, Schmitt PM, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) IEEE Trans Inf Technol Biomed 9:325–336

    Article  Google Scholar 

  71. Carlos R, Coyle S, Corcoran B, Diamond D, Tomas W, Aaron M, Stroiescu F, Daly K (2011) Web-based sensor streaming wearable for respiratory monitoring applications. IEEE Sensors Conference, Limerick, Ireland

    Google Scholar 

  72. Engin M, Demirel A, Engin EZ, Fedakar M (2005) Measurement: J Int Measurement Confederation 37:173–188

    Article  Google Scholar 

  73. Patel S et al (2012) J Neuroeng Rehabil 9:21

    Article  Google Scholar 

  74. Coyle S et al (2010) IEEE Trans Inf Technol Biomed 14:364–370

    Article  Google Scholar 

  75. Magenes G, Curone D, Caldani L, Secco EL (2010) Fire fighters and rescuers monitoring through wearable sensors: The ProeTEX project. 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC, Buenos Aires, Argentina

    Google Scholar 

  76. Loher T, Manessis D, Heinrich R, Schmied B, Vanfleteren J, DeBaets J, Ostmann A, Reichl H (2006) Stretchable electronic systems. 8th Electronics packaging technology conference EPTC ’06, Singapore

    Google Scholar 

  77. Grillet A, Kinet D, Witt J, Schukar M, Krebber K, Pirotte F, Depre A (2008) IEEE Sens J 8:1215–1222

    Article  Google Scholar 

  78. Langereis G, De Voogd-Claessen L, Spaepen A, Siplia A, Rotsch C, Linz T (2007) ConText: contactless sensors for body monitoring incorporated in textiles. IEEE international conference on portable information devices, Orlando, FL

    Google Scholar 

  79. Custodio V, Herrera FJ, Lopez G, Moreno JI (2012) Sensors 12:13907–13946

    Article  Google Scholar 

  80. Brady S, Diamond D, Lau KT (2005) Sens Actuators A 119:398–404

    Article  Google Scholar 

  81. Scilingo EP, Gemignani A, Paradiso R, Taccini N, Ghelarducci B, De Rossi D (2005) IEEE Trans Inf Technol Biomed 9:345–352

    Article  Google Scholar 

  82. Healey J (2011) GSR sock: a new e-textile sensor prototype 2011. 15th Annual international symposium on wearable computers ISWC, San Francisco, CA

    Google Scholar 

  83. Numetrex heart rate monitoring. Available from http://www.numetrex.com. Accessed 20 Dec 2015

  84. Sensingtex Pressure Textile Sensor. Available from http://www.sensingtex.com. Accessed 20 Dec 2015

  85. Sensoria fitness smart sock. Copyright Sensoria Inc. 2015. All rights reserved. Images and products protected by US and international intellectual property legislations. Available from http://www.sensoriafitness.com. Accessed 20 Dec 2015

  86. Shu L, Hua T, Wang Y, Li Q, Feng DD, Tao X (2010) IEEE Trans Inf Technol Biomed 14:767–775

    Article  Google Scholar 

  87. Coyle S, Wu Y, Lau KT, De Rossi D, Wallace G, Diamond D (2007) MRS Bull 32:434–442

    Article  Google Scholar 

  88. Hill K, Dolmage TE, Woon L, Goldstein R, Brooks D (2010) Thorax 65:486–491

    Article  Google Scholar 

  89. Harada T, Mori T, Nishida Y, Yoshimi T, Sato T (1999) Body parts positions and posture estimation system based on pressure distribution image. Proceedings of the IEEE international conference on robotics and automation, Detroit, MI

    Google Scholar 

  90. Wijesiriwardana R (2006) IEEE Sens J 6:571–579

    Article  Google Scholar 

  91. Calvert P, Duggal D, Patra P, Agrawal A, Sawhney A (2008) Mol Crystals Liquid Crystals 484:291–302

    Article  Google Scholar 

  92. Scilingo EP, Lorussi F, Mazzoldi A, De Rossi D (2003) IEEE Sens J 3:460–467

    Article  Google Scholar 

  93. Liu N, Fang G, Wan J, Hai Z, Long H, Zhao X (2011) J Mater Chem 21:18962–18966

    Article  Google Scholar 

  94. Catrysse M, Puers R, Hertleer C, Langenhove LV, Van Egmondc H, Matthys D (2004) Sens Actuators A Phys 114:302–311

    Article  Google Scholar 

  95. Kim KJ, Chang YM, Yoon SK, Hyun J (2009) Integrated Ferroelectrics 107:53–68

    Article  Google Scholar 

  96. Pantelopoulos A, Bourbakis N (2008) A survey on wearable biosensor systems for health monitoring. 30th Annual international conference of the IEEE engineering in medicine and biology society EMBS, Vancouver, Canada

    Google Scholar 

  97. Heilman KJ, Porges SW (2007) Biol Psychol 75:300–305

    Article  Google Scholar 

  98. Noury N et al (2004) VTAMN – a smart clothe for ambulatory remote monitoring of physiological parameters and activity. 30th Annual international conference of the IEEE engineering in medicine and biology society EMBS, San Francisco, CA

    Google Scholar 

  99. McCarthy B, Varakliotis S, Edwards C, Roedig U (2010) Real-world wireless sensor networks. Lecture Notes in Computer Science 6511:37–48

    Article  Google Scholar 

  100. Harms H, Amft O, Tröster G, Roggen D (2008) SMASH: a distributed sensing and processing garment for the classification of upper body postures. Proceedings of the ICST 3rd international conference on body area networks BodyNets ‘08. ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels, Belgium

    Google Scholar 

  101. Textronics-Energy activated fabrics. Available from http://www.textronicsinc.com/textiles. Accessed 20 Dec 2015

  102. Zephyr bioharness. Available from http://www.zephyr-technology.nl/en/product/71/zephyr-bioharness.html. Accessed 20 Dec 2015

  103. Xu D (2006) A neural network approach for hand gesture recognition in virtual reality driving training system of SPG. 18th international conference on pattern recognition ICPR, Hong Kong, China

    Google Scholar 

  104. Kamel NS, Sayeed S, Ellis GA (2008) IEEE Trans Pattern Anal Mach Intell 30:1109–1113

    Article  Google Scholar 

  105. Hernandez-Rebollar JL, Kyriakopoulos N, Lindeman RW (2002) The AcceleGlove: a whole-hand input device for virtual reality. ACM SIGGRAPH conference abstracts and applications, San Antonio, TX

    Google Scholar 

  106. Kallmayer C, Simon E (2012) Large area sensor integration in textiles. International multi-conference on systems, signals and devices SSD, Chemnitz, Germany

    Google Scholar 

  107. Scottevest Smart Jacket. Available from http://www.scottevest.com. Accessed 20 Dec 2015

  108. Yanfen L, Pu H (2011) Smart sportswear. International conference on future computer science and education (ICFCSE), Xi’an, China

    Google Scholar 

  109. Koninklijke Philips Electronics N.V. © 2006 Reprinted, with permission, from Password, Philips Research technology magazine, issue 28, October 2006

    Google Scholar 

  110. Strickland P, Reid G, Burrows B (1997) Thermal profiles in footwear design: an in-sole measurement system. Proceedings of the 4th annual conference mechatronics and machine vision in practice, Toowoomba, Australia

    Google Scholar 

  111. McClusky M (2009) Wired 17:07

    Google Scholar 

  112. Boyd BS et al (2007) J Neurosci Res 85:2272–2283

    Article  Google Scholar 

  113. Hurkmans LP, Bussmann JBJ, Benda E, Verhaar JAN (2006) Gait Posture 23:118–125

    Article  Google Scholar 

  114. PPS digitacts human tactile system. Available from http://www.pressureprofile.com/. Accessed 20 Dec 2015

  115. Texisense smart sock. Available from http://www.texisense.com/. Accessed 20 Dec 2015

  116. Textile Sensoric Alphafit- Smart Sock and Alphamat. Available from http://www.alpha-fit.de. Accessed 20 Dec 2015

  117. Chen W, Nguyen ST, Bouwstra S, Coops R, Brown L, Oetomo SB, Feijs L (2011) Design of wireless sensor system for neonatal monitoring. 4th IFIP international conference on new technologies, mobility and security NTMS, Paris, France

    Google Scholar 

  118. Campbell T, Munro B, Wallace G, Steele J (2007) J Biomech 40:3056–3059

    Article  Google Scholar 

  119. Quinn B (2002) Techno Fashion. Berg, Oxford

    Book  Google Scholar 

  120. Farringdon J (2001) Tech Textiles Int 10:22–24

    Google Scholar 

  121. Meoli D, May-Plumlee T (2002) JTATM 2:2

    Google Scholar 

  122. Sandbach DL (2002) Detector constructed from fabric having non-uniform conductivity. US Patent No 6,369,804, 9 April 2002.

    Google Scholar 

  123. Schubert MB, Werner JH (2006) Mater Today 9:42–50

    Article  Google Scholar 

  124. Serra AA, Nepa P, Manara G (2012) IEEE Trans Antennas Propag 60:1035–1042

    Article  Google Scholar 

  125. Wiggen ON, Storholmen TCB, Naesgaard OP, Faerevik H (2012) Safe@Sea- Improved protective clothing for fishermen in the high north. 3rd Barents occupational health workshop, Oulu, Finland

    Google Scholar 

  126. Rantanen J et al (2000) Smart clothing for the arctic environment. The fourth international symposium on wearable computers. IEEE

    Google Scholar 

  127. Eidsmo RR, Hilde F, Kristine H, Kare RJ (2008) SINTEF Smart helicopter survival suit. Innovations Report SINTEF S6971

    Google Scholar 

  128. Short DC et al (2011) Ionized performance fabric composition. United States Patent 7896928

    Google Scholar 

  129. Takamatsu S, Kobayashi T, Shibayama N, Miyake K, Itoh T (2011) Meter-scale surface capacitive type of touch sensors fabricated by weaving conductive-polymer-coated fibres. Symposium on design, test, integration and packaging of MEMS/MOEMS DTIP, Bernin, France

    Google Scholar 

  130. Zheng N, Wu Z, Lin M, Yang LT, Pan G (2010) IEEE Trans Syst Man Cybernetics 40:36–51

    Article  Google Scholar 

  131. Liehr S et al (2008) Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles. Proceedings of the SPIE optical sensors, Strasbourg, France

    Google Scholar 

  132. Heat blanket by Eeonyx. Available from http://www.eeonyx.com/. Accessed 20 Dec 2015

  133. Yip M, He DD, Winokur E, Balderrama AG, Sheridan R, Hongshen Ma (2009) A flexible pressure monitoring system for pressure ulcer prevention. Annual international conference of the IEEE engineering in medicine and biology society EMBC, Minneapolis, MN

    Google Scholar 

  134. Baurley Pers S (2004) Ubiquit 8:274–281

    Google Scholar 

  135. Buechley L (2006) A construction kit for electronic textiles. 10th IEEE international symposium wearable computers, Montreux, Switzerland

    Google Scholar 

  136. Visijax Commuter Jacket with turn signals. Available from: http://www.visijax.com. Accessed 20 Dec 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina M. Castano or Alison B. Flatau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castano, L.M., Flatau, A.B. (2016). Smart Textile Transducers: Design, Techniques, and Applications. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_6

Download citation

Publish with us

Policies and ethics