Skip to main content

Electrodeformation, Electroporation, and Electrofusion of Giant Unilamellar Vesicles

  • Living reference work entry
  • First Online:

Abstract

This chapter summarizes a spectrum of phenomena observed on model membranes exposed to electric fields. The considered model membrane system is giant unilamellar vesicles with sizes in the range of tens of microns. Because of their large size, the response of the membrane to electric fields can be directly visualized under the microscope. The membrane behavior is exemplified by several types of responses: First, the vesicles undergo morphological changes and adopt prolate, oblate, or spherocylindrical shapes. In general, the vesicle morphology depends on the conductivity conditions of the immersion and encapsulated solutions, and in the case of alternating fields – on the field frequency. Second, after switching the electric field off, these shapes can relax back to a sphere. The relaxation times depend on the initial membrane tension and on the reached transmembrane potential. Third, the vesicles can undergo topological changes such as formation of pores and, in the case of vesicles in contact, fusion. All these processes depend on the material characteristics of the membrane such as mechanical (bending rigidity and stretching elasticity), rheological (membrane shear surface viscosity), and electrical (capacitance) properties of the lipid bilayer. This chapter gives an overview of these properties and their dependence on the membrane phase state, and presents approaches for directly assessing them using giant unilamellar vesicles.

This is a preview of subscription content, log in via an institution.

References

  • Aranda S, Riske KA, Lipowsky R, Dimova R (2008) Morphological transitions of vesicles induced by alternating electric fields. Biophys J 95(2):L19–L21

    Article  Google Scholar 

  • Bezlyepkina N, Gracià RS, Shchelokovskyy P, Lipowsky R, Dimova R (2013) Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. Biophys J 104(7):1456–1464

    Article  Google Scholar 

  • Brochard-Wyart F, de Gennes PG, Sandre O (2000) Transient pores in stretched vesicles: role of leak-out. Physica A 278(1–2):32–51

    Article  Google Scholar 

  • Dimova R (2014) Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid Interface Sci 208:225–234. doi:10.1016/j.cis.2014.03.003

    Article  Google Scholar 

  • Dimova R, Bezlyepkina N, Jordo MD, Knorr RL, Riske KA, Staykova M, Vlahovska PM, Yamamoto T, Yang P, Lipowsky R (2009) Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5(17):3201–3212

    Article  Google Scholar 

  • Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R (2007) Giant vesicles in electric fields. Soft Matter 3(7):817–827

    Article  Google Scholar 

  • Gracià RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R (2010) Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter 6(7):1472–1482. doi:10.1039/b920629a

    Article  Google Scholar 

  • Haluska CK, Riske KA, Marchi-Artzner V, Lehn JM, Lipowsky R, Dimova R (2006) Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc Natl Acad Sci U S A 103(43):15841–15846

    Article  Google Scholar 

  • Harbich W, Helfrich W (1979) Alignment and opening of giant lecithin vesicles by electric-fields. Z Naturforsch, A: Phys Sci 34(9):1063–1065

    Article  Google Scholar 

  • Karatekin E, Sandre O, Guitouni H, Borghi N, Puech PH, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84(3):1734–1749

    Article  Google Scholar 

  • Knorr RL, Staykova M, Gracia RS, Dimova R (2010) Wrinkling and electroporation of giant vesicles in the gel phase. Soft Matter 6(9):1990–1996

    Article  Google Scholar 

  • Lira RB, Dimova R, Riske Karin A (2014) Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Biophys J 107(7):1609–1619. doi:10.1016/j.bpj.2014.08.009

    Article  Google Scholar 

  • Portet T, Dimova R (2010) A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys J 99(10):3264–3273

    Article  Google Scholar 

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339

    Article  Google Scholar 

  • Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88(2):1143–1155

    Article  Google Scholar 

  • Riske KA, Dimova R (2006) Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys J 91(5):1778–1786

    Article  Google Scholar 

  • Riske KA, Knorr RL, Dimova R (2009) Bursting of charged multicomponent vesicles subjected to electric pulses. Soft Matter 5:1983–1986

    Article  Google Scholar 

  • Sadik MM, Li J, Shan JW, Shreiber DI, Lin H (2011) Vesicle deformation and poration under strong dc electric fields. Phys Rev E 83(6):066316

    Article  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  Google Scholar 

  • Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. Chem Bio Chem 11(7):848–865

    Article  Google Scholar 

  • Yang P, Lipowsky R, Dimova R (2009) Nanoparticle formation in giant vesicles: synthesis in biomimetic compartments. Small 5(18):2033–2037

    Article  Google Scholar 

Download references

Acknowledgment

K.A.R. acknowledges the financial support of FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumiana Dimova .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Dimova, R., Riske, K.A. (2016). Electrodeformation, Electroporation, and Electrofusion of Giant Unilamellar Vesicles. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_199-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_199-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics