Skip to main content

Soft Magnetic Wires for Sensor Applications

  • Chapter
  • First Online:
Novel Functional Magnetic Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 231))

Abstract

First amorphous materials using rapid quenching from the liquid state were prepared nearly 50 years ago [1–4]. Development of the rapid-quenching technique allowed obtaining of new materials with metastable crystalline, amorphous, nanocrystalline, granular structures with a new combination of physical properties (mechanical, magnetic, electrochemical, etc.) and opening of new fields of research in material science, magnetism, and technology. During the next years, few rapid-quenching technologies allowing preparation of different types of rapidly quenched materials have been developed. At the beginning most attention has been paid to studies of planar rapidly quenched materials: rapidly quenched ribbons produced by quenching on the drum [4–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miroshnichenko, I.S., Salli, I.V.: A device for the crystallization of alloys at a high cooling rate. Ind. Lab. 25, 1463 (1959) in English, Zav. Lab. 11, 1398 (1959)

    Google Scholar 

  2. Klement, K., Wilens, R.H., Duwez, P.: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960)

    Article  ADS  Google Scholar 

  3. Duwez, P., Williams, R.J., Klement, K.: Continuous series of metastable solid solutions in Ag-Cu alloys. Appl. Phys. 31, 1136–1142 (1966)

    Article  Google Scholar 

  4. Duwez, P.: Metastable phases obtained by rapid quenching from the liquid state. In: Reiss, H. (ed.) Progress in solid state chemistry of alloy phases, vol. 3, pp. 377–406. Pergamon Press, Oxford (1966)

    Google Scholar 

  5. Jones, H.: Splat cooling and metastable phases. Rep. Prog. Phys. 36, 1425–1497 (1973)

    Article  ADS  Google Scholar 

  6. Luborsky, F.E.: Amorphous metallic alloys. Butterworth & CoPublishers Ltd, London, UK (1983)

    Book  Google Scholar 

  7. Humphrey, F.B., Mohri, K., Yamasaki, J., et al.: Re-entrant magnetic flux reversal in amorphous wires. In: Hernando, A., Madurga, V., Sánchez-Trujillo, M.C., Vázquez, M. (eds.) Magnetic properties of amorphous metals, pp. 110–116. Elsevier Science Publisher, Amsterdam, The Netherlands (1987)

    Google Scholar 

  8. Humphrey, F.B.: Article surveillance magnetic marker having a hysteresis loop with large Barkhausen discontinuities. US Patent 4,660,025, 21 Apr 1987

    Google Scholar 

  9. Mohri, K., Humphrey, F.B., Kawashima, K., et al.: Large barkhausen and matteucci effects in FeCoSiB, FeCrSiB, and FeNiSiB amorphous wires. IEEE Trans. Magn. 26, 1789–1791 (1990)

    Article  ADS  Google Scholar 

  10. Vázquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D Appl. Phys. 29, 939–949 (1996)

    Article  ADS  Google Scholar 

  11. Wiegand, J.R.: Bistable magnetic device.US Patent 3,820,090, 1974

    Google Scholar 

  12. Heiden, C., Rogalla, H.: Barkhausen jump field distribution of iron whiskers. J. Magn. Magn. Mater. 26, 275–277 (1982)

    Article  ADS  Google Scholar 

  13. Ponomarev, B.K., Zhukov, A.: Fluctuations of start field exhibited by amorphous alloy. Sov. Phys. Solid State 26, 2974–2979 (1984)

    Google Scholar 

  14. Ponomarev, B.K., Zhukov, A.P.: Effect of temperature on the start field distribution of amorphous Co70Fe5Si10B15 alloy. Sov. Phys. Solid state 27, 444–448 (1985)

    Google Scholar 

  15. Mizutani, M., Katoh, H., Panina, L.V., et al.: Distance sensors utilizing a current-exciting large Barkhausen effect in twisted amorphous magnetostrictive wires. IEEE Trans. J. Magn. Japan 9(2), 102–108 (1994)

    Article  Google Scholar 

  16. Zhukov, A.: Domain wall propagation in a Fe-rich glass-coated amorphous microwire. Appl. Phys. Lett. 78, 3106–3108 (2001)

    Article  ADS  Google Scholar 

  17. Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)

    Article  ADS  Google Scholar 

  18. Beach, R.S., Berkowitz, A.E.: Giant magnetic-field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64, 3652–3654 (1994)

    Article  ADS  Google Scholar 

  19. Harrison, E.P., Turney, G.L., Rowe, H., et al.: The electrical properties of high permeability wires carrying alternating current. Proc. Roy. Soc. Math. Phys. Eng. Sci. 157(891), 451–479 (1936)

    Article  ADS  Google Scholar 

  20. Ciureanu, P., Rudkowska, G., Clime, L., et al.: Anisotropy optimization of giant magnetoimpedance sensors. J. Optoelectron. Adv. Mater. 6, 905–910 (2004)

    Google Scholar 

  21. Zhukov, A., Ipatov, M., Churyukanova, M., et al.: Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586(Suppl. 1), S279–S286 (2014)

    Article  Google Scholar 

  22. Yoshizawa, Y., Oguma, S., Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044–6046 (1988)

    Article  ADS  Google Scholar 

  23. Yoshizawa, Y., Yamauchi, K.: Fe-based soft magnetic alloy composed of ultrafine grain structure. Mater. Trans. JIM 31, 307–314 (1990)

    Article  Google Scholar 

  24. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)

    Article  ADS  Google Scholar 

  25. Herzer, G.: Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mater. 294, 99–106 (2005)

    Article  ADS  Google Scholar 

  26. Zhukova, V., Zhukov, A., Kraposhin, V., et al.: Magnetic properties and GMI of soft magnetic amorphous fibers. Sens. Actuators (A) 106, 225–229 (2003). doi:10.1016/S0924-4247(03)00172-9

    Article  Google Scholar 

  27. Ohnaka, I., Fukusako, T., Ohmichi, T., et al.: Production of amorphous filament by in rotating- liquid spinning method. In: Masumoto T., Suzuki K. (eds.) Proc. 4th Inter. Conf. on rapidly quenched metals. pp. 31–34 (1982)

    Google Scholar 

  28. Hagiwara, M., Inoue, A., Masumoto, T.: Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating water spinning method. Metall. Trans. 13A, 373–382 (1982)

    Article  Google Scholar 

  29. Ogasawara, I., Ueno, S.: Preparation and properties of amorphous wires. IEEE Trans. Magn. 31(2), 1219–1223 (1995)

    Article  ADS  Google Scholar 

  30. Masumoto, T., Ohnaka, I., Inoue, A., et al.: Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water. Scr. Metall. 15, 293–296 (1981)

    Article  Google Scholar 

  31. Maringer, E., Mobley, C.E. US Patent 3,871,439, Mar 1975

    Google Scholar 

  32. Rudkowski, P., Rudkowska, G., Strom-Olsen, J.O.: The fabrication of fine metallic fibers by continuous melt extraction and their magnetic and mechanical properties. Mater. Sci. Eng. A 133, 158–161 (1991)

    Article  Google Scholar 

  33. Rudkowski, P., Rudkowska, G., Strom-Olsen, J.O., et al.: The magnetic properties of sub 20 m metallic fibers formed by continuous melt extraction. J. Appl. Phys. 69, 5017–5019 (1991)

    Article  ADS  Google Scholar 

  34. Rudkowski, P., Strom-Olsen, J.O., Rudkowska, G., et al.: Ultra fine, ultra soft metallic fibers. IEEE Trans. Magn. 31, 1224–1228 (1995)

    Article  ADS  Google Scholar 

  35. Zhukov, A., Zhukova, V.: Magnetic properties and applications of ferromagnetic microwires with amorphous and nanocrystalline structure, p. 162. Nova, NewYork (2009). ISBN 978-1-60741-770-5

    Google Scholar 

  36. Zhukov, A., Zhukova, V.: Magnetic sensors based on thin magnetically soft wires with tunable magnetic properties and its applications. International Frequency Sensor Association (IFSA) Publishing, Spain (2014). ISBN 10: 84-617-1866-6

    Google Scholar 

  37. Taylor, G.F.: A method of drawing metallic filaments and a discussion of their properties and uses. Phys. Rev. 23, 655–660 (1924)

    Article  ADS  Google Scholar 

  38. Taylor, G.F.: Process and apparatus for making filaments. United States Patent Office, 1,793,529, 24 Feb 1931

    Google Scholar 

  39. Ulitovsky, A.V.: Micro-technology in design of electric devices, vol. 7. p. 6 Leningrad (1951)

    Google Scholar 

  40. Ulitovski, A.V., Avernin, N.M.: Method of fabrication of metallic microwire. Patent No161325 (USSR), 19.03.64. Bulletin No7, p. 14 (1964)

    Google Scholar 

  41. Ulitovsky, A.V., Maianski, I.M., Avramenco, A.I.: Method of continuous casting of glass coated microwire. Patent No128427 (USSR), 15.05.60. Bulletin. No10, p. 14 (1960)

    Google Scholar 

  42. Badinter, E.Ya., Berman, N.R., Drabenko, I.F. et al.: Cast microwires and its properties. Shtinica, Kishinev (1973)

    Google Scholar 

  43. Larin, V.S., Torcunov, A.V., Zhukov, A., et al.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1–2), 39–45 (2002)

    Article  ADS  Google Scholar 

  44. Zhukov, A., Kostitcyna, E., Shuvaeva, E., et al.: Effect of composite origin on magnetic properties of glass-coated microwires. Intermetallics 44, 88–93 (2014)

    Article  Google Scholar 

  45. Zhukov, A., Shuvaeva, E., Kaloshkin, S., et al.: Influence of the defects on magnetic properties of glass-coated microwires. J. Appl. Phys. 115, 17A305 (2014)

    Article  Google Scholar 

  46. Zhukov, A., Shuvaeva, E., Kaloshkin, S., et al.: Studies of the defects influence on magnetic properties of glass-coated microwires. IEEE Trans. Magn. 50(11), 2006604 (2014)

    Google Scholar 

  47. Zhukov, A., Garcia, C., Ilyn, M., et al.: Magnetic and transport properties of granular and Heusler-type glass-coated microwires. J. Magn. Magn. Mater. 324, 3558–3562 (2012)

    Article  ADS  Google Scholar 

  48. Zhukov, A., García, C., Zhukova, V., et al.: Fabrication and magnetic properties of Cu50(Fe69Si10B16C5)50 thin microwires. J. Non Cryst. Solids 353, 922–924 (2007)

    Article  ADS  Google Scholar 

  49. García, C., Zhukov, A., González, J., et al.: Fabrication, structural and magnetic characterization of thin microwires with novel composition Cu70(Co70Fe5Si10B15)30. J. Alloys Compd. 483, 566–569 (2009)

    Article  Google Scholar 

  50. Varga, R., Ryba, T., Vargova, Z., et al.: Magnetic and structural properties of Ni-Mn-Ga Heusler-type microwires. Scr. Mater. 65(8), 703–706 (2011)

    Article  Google Scholar 

  51. Shen, L.P., Uchiyama, T., Mohri, K., et al.: Sensitive stress-impedance micro sensor using amorphous magnetostrictive wire. IEEE Trans. Magn. 33, 3355–3359 (1997)

    Article  ADS  Google Scholar 

  52. Mohri, K., Uchiyama, T., Shen, L.P., et al.: Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls. J. Magn. Magn. Mater. 249, 351–356 (2002)

    Article  ADS  Google Scholar 

  53. García, C., Zhukova, V., Gonzazez, J., et al.: Magnetic and transport properties of Fe-rich thin cold-drawn amorphous wires. J. Alloys Compd. 488, 5–8 (2010)

    Article  Google Scholar 

  54. Garcia, C., Chizhik, A., del Val, J.J., et al.: Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires. J. Magn. Magn. Mater. 294, 193–201 (2005)

    Article  ADS  Google Scholar 

  55. Zhukova, V., Umnov, P., Molokanov, V., et al.: Magnetic properties and giant magneto-impedance effect of ductile amorphous microwires without glass coating. Sens. Lett. 10(3/4), 712–716 (2012)

    Google Scholar 

  56. Chiriac, H., Corodeanu, S., Lostun, M., et al.: Magnetic behavior of rapidly quenched submicron amorphous wires. J. Appl. Phys. 107, 09A301 (2010)

    Article  Google Scholar 

  57. Zhukov, A., Blanco, J.M., Ipatov, M., et al.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223 (2012). doi:10.1186/1556-276X-7-223

    Article  ADS  Google Scholar 

  58. Zhukov, A.P.: The remagnetization process of bistable amorphous alloys. Mater. Des. 5, 299–305 (1993)

    Article  Google Scholar 

  59. Zhukov, A.P., Vázquez, M., Velázquez, J., et al.: The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J. Magn. Magn. Mater. 151, 132–138 (1995)

    Article  ADS  Google Scholar 

  60. Aragoneses, P., Blanco, J.M., Dominguez, L., et al.: The stress dependence of the switching field in glass-coated amorphous microwires. J. Phys. D Appl. Phys. 31(1998), 3040–3045 (1998)

    Article  ADS  Google Scholar 

  61. Zhukova, V., Zhukov, A., Blanco, J.M., Gonzalez, J., et al.: Effect of applied stress on remagnetization and magnetization profile of Co-Si-B amorphous wire. J. Magn. Magn. Mater. 242–245, 1439–1442 (2002)

    Article  Google Scholar 

  62. Zhukova, V., Zhukov, A., Blanco, J.M., et al.: Effect of applied stress on remagnetization and magnetization profile of Co-Si-B amorphous wire. J. Magn. Magn. Mater. 258–259, 189–191 (2003)

    Article  Google Scholar 

  63. Zhukova, V., Zhukov, A., Blanco, J.M., et al.: Effect of applied stress on magnetization profile of Fe-Si-B amorphous wire. J. Appl. Phys. 93, 7208–7210 (2003)

    Article  ADS  Google Scholar 

  64. Antonov, A.S., Borisov, V.T., Borisov, O.V., et al.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D Appl. Phys. 33, 1161–1168 (2000)

    Article  ADS  Google Scholar 

  65. Chiriac, H., Ovari, T.A., Zhukov, A.: Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254–255, 469–471 (2003)

    Article  Google Scholar 

  66. Chiriac, H., Ovari, T.A., Pop, G., et al.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105–10113 (2005)

    Google Scholar 

  67. Velázquez, J., Vazquez, M., Zhukov, A.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11(10), 2499–2505 (1996)

    Article  ADS  Google Scholar 

  68. Zhukov, A., Ipatov, M., Blanco, J.M., et al.: Fast magnetization switching in amorphous microwires. Acta Phys. Pol. A 126, 7–11 (2014)

    Article  Google Scholar 

  69. Garcia Prieto, M.J., Pina, E., Zhukov, A.P., et al.: Glass coated Co-rich amorphous microwires with improved permeability. Sens. Actuators A 81(1–3), 227–231 (2000)

    Article  Google Scholar 

  70. Zhukov, A., Gonzalez, J., Blanco, J.M., et al.: Induced magnetic anisotropy in Co-Mn-Si-B amorphous microwires. J. Appl. Phys. 87, 1402–1408 (2000)

    Article  ADS  Google Scholar 

  71. Zhukov, A., Vázquez, M., Velázquez, J., et al.: Frequency dependence of coercivity in rapidly quenched amorphous materials. J. Mater. Sci. Eng. A 226–228, 753–756 (1997)

    Article  Google Scholar 

  72. Allwood, D.A., Xiong, G., Faulkner, C.C., et al.: Magnetic domain-wall logic. Science 309, 1688–1692 (2005)

    Article  ADS  Google Scholar 

  73. Hayashi, M., Thomas, L., Rettner, C., et al.: Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205(4) (2006)

    Article  ADS  Google Scholar 

  74. Chen, D.-X., Dempsey, N.M., Vázquez, M., Hernando, A.: Propagating domain-wall shape and dynamics in iron-rich amorphous wires. IEEE Trans. Magn. 31, 781–790 (1995)

    Article  ADS  Google Scholar 

  75. Varga, R., Zhukov, A., Zhukova, V., et al.: Supersonic domain wall in magnetic microwires. Phys. Rev. B 76, 32406 (2007)

    Article  Google Scholar 

  76. Kunza, A., Reiff, S.C.: Enhancing domain wall speed in nanowires with transverse magnetic fields. J. Appl. Phys. 103, 07D903 (2008)

    Google Scholar 

  77. Zhukov, A., Blanco, J.M., Chizhik, A., et al.: Manipulation of domain wall dynamics in amorphous microwires through domain wall collision. J. Appl. Phys. 114, 043910 (2013)

    Article  ADS  Google Scholar 

  78. Gudoshnikov, S.A., Grebenshchikov, Y.B., Ljubimov, B.Y., et al.: Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Stat. Sol. A 206(4), 613–617 (2009)

    Article  ADS  Google Scholar 

  79. Ekstrom, P.A., Zhukov, A.: Spatial structure of the head-to-head propagating domain wall in glass-covered FeSiB microwire. J. Phys. D Appl. Phys. 43, 205001 (2010)

    Article  ADS  Google Scholar 

  80. Sixtus, K.J., Tonks, L.: Propagation of large Barkhausen discontinuities. II. Phys. Rev. 42, 419 (1932)

    Article  ADS  Google Scholar 

  81. Ipatov, M., Zhukova, V., Zvezdin, A.K., Zhukov, A.: Mechanisms of the ultrafast magnetization switching in bistable amorphous microwires. J. Appl. Phys. 106, 103902 (2009)

    Article  ADS  Google Scholar 

  82. Konno, Y., Mohri, K.: Magnetostriction measurements for amorphous wires. IEEE Trans. Magn. 25(5), 3623–3625 (1989)

    Article  ADS  Google Scholar 

  83. Zhukov, A., Zhukova, V., Blanco, J.M., et al.: Magnetostriction in glass-coated magnetic microwires. J. Magn. Magn. Mater. 258, 151–157 (2003)

    Article  ADS  Google Scholar 

  84. Zhukov, A., Blanco, J.M., Ipatov, M., Zhukova, V.: Fast magnetization switching in thin wires: magnetoelastic and defects contributions. Sens. Lett. 11(1), 170–176 (2013)

    Article  Google Scholar 

  85. Panina, L.V., Mizutani, M., Mohri, K., et al.: Dynamics and relaxation of large Barkhausen discontinuity in amorphous wires. IEEE Trans. Magn. 27(6), 5331–5333 (1991)

    Article  ADS  Google Scholar 

  86. Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A.: Domain wall propagation in Fe-rich amorphous microwires. Physica B 407, 1442–1445 (2012)

    Article  ADS  Google Scholar 

  87. Beach, G.S.D., Tsoi, M., Erskine, J.L.: Current-induced domain wall motion. J. Magn. Magn. Mater. 320, 1272–1281 (2008)

    Article  ADS  Google Scholar 

  88. Blanco, J.M., Zhukova, V., Ipatov, M., Zhukov, A.: Magnetic properties and domain wall propagation in micrometric amorphous microwires. Sens. Lett. 11(1), 187–190 (2013)

    Article  Google Scholar 

  89. Vázquez, M., Zhukov, A.: Magnetic properties of glass-coated amorphous and nanocrystalline microwires. J. Magn. Magn. Mater. 160, 223–228 (1996)

    Article  ADS  Google Scholar 

  90. Zhukov, A., Ipatov, M., Garcia, C., et al.: From manipulation of giant magnetoimpedance in thin wires to industrial applications. J. Supercond. Nov. Magn. 26(4), 1045–1054 (2013)

    Article  Google Scholar 

  91. Hernando, A., Barandiarán, J.M.: The initial Matteucci effect. J. Phys. D Appl. Phys. 8, 833–840 (1975)

    Article  ADS  Google Scholar 

  92. Nielsen, O.V.: Magnetic anisotropy determined by differential magnetization measurements in twisted amorphous ribbons. J. Magn. Magn. Mater. 24, 81–92 (1981)

    Article  ADS  Google Scholar 

  93. Mohri, K., Humphrey, F.B., Yamasaki, J., Okamura, K.: Jitter-less pulse generator elements using amorphous bistable wires. IEEE Trans. Magn. 20, 1409 (1984)

    Article  ADS  Google Scholar 

  94. Cobeño, A.F., Blanco, J.M., Zhukov, A., et al.: Matteucci effect in glass coated microwires. IEEE Trans. Magn. 35, 3382–3384 (1999)

    Article  ADS  Google Scholar 

  95. Zhukova, V., Chizhik, A., Zhukov, A., et al.: Optimization of giant magneto-impedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38(5, part I), 3090–3092 (2002)

    Article  ADS  Google Scholar 

  96. Pirota, K.R., Kraus, L., Chiriac, H., Knobel, M.: Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire. J. Magn. Magn. Mater. 221, L243–L247 (2000). doi:10.1109/TMAG.2002.802397

    Article  ADS  Google Scholar 

  97. Usov, N.A., Antonov, A.S., Lagar`kov, A.N.: Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. J. Magn. Magn. Mater. 185, 159–173 (1998)

    Article  ADS  Google Scholar 

  98. Aragoneses, P., Zhukov, A., Gonzalez, J., et al.: Effect of AC driving current on magneto-impedance effect. Sens. Actuators A 81(1–3), 86–90 (2000)

    Article  Google Scholar 

  99. Zhukova, V., Ipatov, M., García, C., et al.: Development of ultra-thin glass-coated amorphous microwires for high frequency magnetic sensors applications. Open Mater. Sci. Rev. 1, 1–12 (2007)

    Article  Google Scholar 

  100. Vázquez, M., Zhukov, A., Aragoneses, P., et al.: Magneto-impedance of glass-coated amorphous CoMnSiB microwires. IEEE Trans. Magn. 34(3), 724–728 (1998)

    Article  ADS  Google Scholar 

  101. Phn, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)

    Article  Google Scholar 

  102. Sun, J.-F., Liu, J.-S., Xing, D.-W., Xue, X.: Experimental study on the effect of alternating-current amplitude on GMI output stability of Co-based amorphous wires. Phys. Status Solidi A 208(4), 910–914 (2011)

    Article  ADS  Google Scholar 

  103. Liu, J., Shen, H., Xing, D., Sun, J.: Optimization of GMI properties by AC Joule annealing in melt-extracted Co-rich amorphous wires for sensor applications. Phys. Status Solidi A 211(7), 1577–1582 (2014)

    Article  Google Scholar 

  104. Zhao, Y., Hao, H., Zhang, Y.: Preparation and giant magneto-impedance behavior of Co-based amorphous wires. Intermetallics 42, 62–67 (2013)

    Article  Google Scholar 

  105. Zhukova, V., Umnov, P., Molokanov, V., et al.: Magnetic properties and GMI effect of ductile amorphous microwires. IEEE Trans. Magn. 48(11), 4034–4037 (2012)

    Article  ADS  Google Scholar 

  106. Ménard, D., Britel, M., Ciureanu, P., Yelon, A.: Giant magnetoimpedance in a cylindrical conductor. J. Appl. Phys. 84, 2805–2814 (1998)

    Article  ADS  Google Scholar 

  107. Zhukov, A., Ipatov, M., Zhukova, V.: Giant magneto-impedance effect of thin magnetic wires at elevated frequencies. J. Appl. Phys. 111, 07E512 (2012)

    Article  Google Scholar 

  108. Zhukov, A., Talaat, A., Ipatov, M., Zhukova, V.: Tailoring of high frequency giant magnetoimpedance effect of amorphous Co-rich microwires. IEEE Magn. Lett. (2015)

    Google Scholar 

  109. Ipatov, M., Zhukova, V., Zhukov, A., et al.: Low-field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B 81, 134421 (2010)

    Article  ADS  Google Scholar 

  110. Zhukov, A.: Design of magnetic properties of Fe-rich glass – coated magnetic microwires for technical applications. Adv. Funct. Mater. 16(5), 675–680 (2006)

    Article  MathSciNet  Google Scholar 

  111. Blanco, J.M., Zhukov, A., Gonzalez, J.: Torsional stress impedance and magneto-impedance in (Co0.95Fe0.05)72.5Si12.5B15 amorphous wire with helical induced anisotropy. J. Phys. D Appl. Phys. 32, 3140–3145 (1999)

    Article  ADS  Google Scholar 

  112. Blanco, J.M., Zhukov, A., Gonzalez, J.: Asymmetric torsion stress giant magnetoimpedance in nearly-zero magnetostrictive amorphous wires. J. Appl. Phys. 87(9), 4813–4815 (2000)

    Article  ADS  Google Scholar 

  113. Zhukov, A.: Glass-coated magnetic microwires for technical applications. J. Magn. Magn. Mater. 242–245, 216–223 (2002)

    Article  Google Scholar 

  114. Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Recent research on magnetic properties of glass-coated microwires. J. Magn. Magn. Mater. 294, 182–192 (2005)

    Article  ADS  Google Scholar 

  115. Talaat, A., Ipatov, M., Zhukova, V., et al.: Giant magneto-impedance effect in thin Finemet nanocrystalline microwires. Phys. Status Solidi C 11(5–6), 1120–1124 (2014)

    Article  Google Scholar 

  116. Zhukov, A.P., Talaat, A., Ipatov, M., et al.: Effect of nanocrystallization on magnetic properties and GMI effect of microwires. IEEE Trans. Magn. 50(6), 2501905 (2014)

    Google Scholar 

  117. Talaat, A., Zhukova, V., Ipatov, M.: Effect of nanocrystallization on giant magnetoimpedance effect of Fe-based microwires. Intermetallics 51, 59–63 (2014)

    Article  Google Scholar 

  118. Talaat, A., Zhukova, V., Ipatov, M., et al.: Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. J. Appl. Phys. 115, 17A313 (2014)

    Article  Google Scholar 

  119. Zhukova, V., Talaat, A., Ipatov, M., et al.: Effect of nanocrystallization on magnetic properties and GMI effect of Fe-rich microwires. J. Electron. Mater. 43(12), 4540–4547 (2014). doi:10.1007/s11664-014-3370-4

    Article  ADS  Google Scholar 

  120. Churyukanova, M., Zhukova, V., Talaat, A., et al.: Correlation between thermal and magnetic properties of glass coated microwires. J. Alloys Compd. 615(SUPPL 1), S242–S246 (2014). doi:10.1016/j.jallcom.2013.11.191

    Article  Google Scholar 

  121. Honkura, Y.: Development of amorphous wire type MI sensors for automobile use. Magn. Magn. Mater. 249, 375–381 (2002)

    Article  ADS  Google Scholar 

  122. Mohri, K., Honkura, Y.: Amorphous wire and CMOS IC based magneto-impedance sensors—Origin, topics, and future. Sens. Lett. 5(2), 267–270 (2007)

    Article  Google Scholar 

  123. Peng, H.X., Qin, F.X., Phan, M.H., et al.: Co-based magnetic microwire and field-tunable multifunctional macro-composites. J. Non Cryst. Solids 355, 1380–1386 (2009)

    Article  ADS  Google Scholar 

  124. Panina, L., Ipatov. M., Zhukova. V. et al.: Tuneable composites containing magnetic microwires, chapter 22: 431-460 DOI: 10.5772/21423. In: Cuppoletti, J. (ed) Metal, ceramic and polymeric composites for various uses, InTech - Open Access Publisher (www.intechweb.org), Janeza Trdine, 9, 51000 Rijeka, Croatia, DOI: 10.5772/1428 ISBN: 978-953-307-353-8 (ISBN 978-953-307-1098-3) (2011)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. A. Zhukov for the help with the chapter preparation and wish to acknowledge the contribution of Dr. J. M. Blanco, Dr. M. Ipatov, and Dr. A. Chizhik. This work was supported by the Spanish MINECO under MAT2013-47231-C2-1-P Project and by the Basque Government under Saiotek 13 PROMAGMI (S-PE13UN014) and DURADMAG (S-PE13UN007) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Zhukova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhukova, V. (2016). Soft Magnetic Wires for Sensor Applications. In: Zhukov, A. (eds) Novel Functional Magnetic Materials. Springer Series in Materials Science, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-26106-5_6

Download citation

Publish with us

Policies and ethics