Skip to main content

Inflammatory Bowel Disease: Pathobiology

  • Chapter
  • First Online:
The ASCRS Textbook of Colon and Rectal Surgery

Abstract

The current theory on the etiology of inflammatory bowel disease involves the interaction between a triggering environmental factor, possibly in the microbiome, and an individual susceptible to the disease due to genetic defects in immune function and regulation. To date over 300 genes and over 20 bacteria and viruses have been associated with the disease. No single factor is causative of the disease. Instead, an interplay of these factors leads to an inappropriate immune response resulting in the clinical characteristics or phenotype of the disease. Defects in the main innate immune functions of epithelial barrier function, pathogen recognition, and autophagy as well as adaptive immune dysfunction, particularly in T cell activation, differentiation, and function, have all been implicated in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wilks S. Morbid appearances in the intestines of Miss Bankes. Med Times Gazette. 1859;2:264–5.

    Google Scholar 

  2. Crohn BB, Ginzburg L, Oppenheimer GD. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, Leon Ginzburg, and Gordon D. Oppenheimer. JAMA. 1984;251(1):73–9.

    CAS  PubMed  Google Scholar 

  3. Koltun WA. IBD: diagnosis and evaluation. In: Beck DE, Roberts PL, Saclarides TJ, editors. The ASCRS textbook of colon and rectal surgery. 2nd ed. New York: Springer; 2011. p. 449–62.

    Google Scholar 

  4. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12.

    CAS  PubMed  Google Scholar 

  5. Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clin Epidemiol. 2013;5:237–47.

    PubMed  PubMed Central  Google Scholar 

  6. Mahmud N, Weir DG. The urban diet and Crohn’s disease: is there a relationship? Eur J Gastroenterol Hepatol. 2001;13(2):93–5.

    CAS  PubMed  Google Scholar 

  7. Hou JK, El-Serag H, Thirumurthi S. Distribution and manifestations of inflammatory bowel disease in Asians, Hispanics, and African Americans: a systematic review. Am J Gastroenterol. 2009;104(8):2100–9.

    PubMed  Google Scholar 

  8. Ahmad T, Satsangi J, McGovern D, Bunce M, Jewell DP. Review article: the genetics of inflammatory bowel disease. Aliment Pharmacol Ther. 2001;15(6):731–48.

    CAS  PubMed  Google Scholar 

  9. Soon IS, Molodecky NA, Rabi DM, Ghali WA, Barkema HW, Kaplan GG. The relationship between urban environment and the inflammatory bowel diseases: a systematic review and meta-analysis. BMC Gastroenterol. 2012;12:51.

    PubMed  PubMed Central  Google Scholar 

  10. Economou M, Pappas G. New global map of Crohn’s disease: Genetic, environmental, and socioeconomic correlations. Inflamm Bowel Dis. 2008;14(5):709–20.

    PubMed  Google Scholar 

  11. Bernstein CN, Shanahan F. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut. 2008;57(9):1185–91.

    PubMed  Google Scholar 

  12. Prideaux L, Kamm MA, De Cruz PP, Chan FK, Ng SC. Inflammatory bowel disease in Asia: a systematic review. J Gastroenterol Hepatol. 2012;27(8):1266–80.

    PubMed  Google Scholar 

  13. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54. e42; quiz e30.

    PubMed  Google Scholar 

  14. Roth MP, Petersen GM, McElree C, Feldman E, Rotter JI. Geographic origins of Jewish patients with inflammatory bowel disease. Gastroenterology. 1989;97(4):900–4.

    CAS  PubMed  Google Scholar 

  15. Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis. 2003;3(8):507–14.

    PubMed  Google Scholar 

  16. Wagner J, Sim WH, Lee KJ, Kirkwood CD. Current knowledge and systematic review of viruses associated with Crohn’s disease. Rev Med Virol. 2013;23(3):145–71.

    CAS  PubMed  Google Scholar 

  17. Strober W. Adherent-invasive E, coli in Crohn disease: bacterial “agent provocateur”. J Clin Invest. 2011;121(3):841–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rutgeerts P, Goboes K, Peeters M, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet. 1991;338(8770):771–4.

    CAS  PubMed  Google Scholar 

  19. Marks DJ, Rahman FZ, Sewell GW, Segal AW. Crohn’s disease: an immune deficiency state. Clin Rev Allergy Immunol. 2010;38(1):20–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Danese S, Fiocchi C. Ulcerative colitis. N Engl J Med. 2011;365(18):1713–25.

    CAS  PubMed  Google Scholar 

  21. Targan SR. The utility of ANCA and ASCA in inflammatory bowel disease. Inflamm Bowel Dis. 1999;5(1):61–3. discussion 66-67.

    CAS  PubMed  Google Scholar 

  22. Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF. A population-based case control study of potential risk factors for IBD. Am J Gastroenterol. 2006;101(5):993–1002.

    PubMed  Google Scholar 

  23. Cottone M, Rosselli M, Orlando A, et al. Smoking habits and recurrence in Crohn’s disease. Gastroenterology. 1994;106(3):643–8.

    CAS  PubMed  Google Scholar 

  24. Sutherland LR, Ramcharan S, Bryant H, Fick G. Effect of cigarette smoking on recurrence of Crohn’s disease. Gastroenterology. 1990;98(5 Pt 1):1123–8.

    CAS  PubMed  Google Scholar 

  25. Reese GE, Nanidis T, Borysiewicz C, Yamamoto T, Orchard T, Tekkis PP. The effect of smoking after surgery for Crohn’s disease: a meta-analysis of observational studies. Int J Colorectal Dis. 2008;23(12):1213–21.

    PubMed  Google Scholar 

  26. Birrenbach T, Bocker U. Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis. 2004;10(6):848–59.

    PubMed  Google Scholar 

  27. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Calkins BM. A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci. 1989;34(12):1841–54.

    CAS  PubMed  Google Scholar 

  29. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006;81(11):1462–71.

    PubMed  Google Scholar 

  30. Ananthakrishnan AN, Higuchi LM, Huang ES, et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med. 2012;156(5):350–9.

    PubMed  PubMed Central  Google Scholar 

  31. Felder JB, Korelitz BI, Rajapakse R, Schwarz S, Horatagis AP, Gleim G. Effects of nonsteroidal antiinflammatory drugs on inflammatory bowel disease: a case-control study. Am J Gastroenterol. 2000;95(8):1949–54.

    CAS  PubMed  Google Scholar 

  32. O’Brien J. Nonsteroidal anti-inflammatory drugs in patients with inflammatory bowel disease. Am J Gastroenterol. 2000;95(8):1859–61.

    PubMed  Google Scholar 

  33. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Takeuchi K, Smale S, Premchand P, et al. Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2006;4(2):196–202.

    CAS  PubMed  Google Scholar 

  35. Bernstein CN, Singh S, Graff LA, Walker JR, Miller N, Cheang M. A prospective population-based study of triggers of symptomatic flares in IBD. Am J Gastroenterol. 2010;105(9):1994–2002.

    PubMed  Google Scholar 

  36. Bonner GF, Walczak M, Kitchen L, Bayona M. Tolerance of nonsteroidal antiinflammatory drugs in patients with inflammatory bowel disease. Am J Gastroenterol. 2000;95(8):1946–8.

    CAS  PubMed  Google Scholar 

  37. Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Summers RW, Elliott DE, Urban Jr JF, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54(1):87–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Garg SK, Croft AM, Bager P. Helminth therapy (worms) for induction of remission in inflammatory bowel disease. Cochrane Database Syst Rev. 2014;1:CD009400.

    Google Scholar 

  40. Binder V. Genetic epidemiology in inflammatory bowel disease. Dig Dis. 1998;16(6):351–5.

    CAS  PubMed  Google Scholar 

  41. Probert CS, Jayanthi V, Pinder D, Wicks AC, Mayberry JF. Epidemiological study of ulcerative proctocolitis in Indian migrants and the indigenous population of Leicestershire. Gut. 1992;33(5):687–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Montgomery SM, Morris DL, Pounder RE, Wakefield AJ. Asian ethnic origin and the risk of inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1999;11(5):543–6.

    CAS  PubMed  Google Scholar 

  43. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9.

    CAS  PubMed  Google Scholar 

  46. Hviid A, Svanstrom H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut. 2011;60(1):49–54.

    PubMed  Google Scholar 

  47. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130(4):e794–803.

    PubMed  PubMed Central  Google Scholar 

  48. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010;105(12):2687–92.

    PubMed  Google Scholar 

  49. Virta L, Auvinen A, Helenius H, Huovinen P, Kolho KL. Association of repeated exposure to antibiotics with the development of pediatric Crohn’s disease—a nationwide, register-based finnish case-control study. Am J Epidemiol. 2012;175(8):775–84.

    PubMed  Google Scholar 

  50. Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol. 2014;7:473–87.

    PubMed  PubMed Central  Google Scholar 

  51. Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn’s Colitis. 2014;8(12):1569–81.

    Google Scholar 

  52. Rehman A, Rausch P, Wang J, et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut. Jan 7 2015; pii: gutjnl-2014-308341. doi:10.1136/gutjnl-2014-308341.

  53. Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6(12):107.

    PubMed  PubMed Central  Google Scholar 

  54. Kaplan GG, Jackson T, Sands BE, Frisch M, Andersson RE, Korzenik J. The risk of developing Crohn’s disease after an appendectomy: a meta-analysis. Am J Gastroenterol. 2008;103(11):2925–31.

    PubMed  Google Scholar 

  55. Russel MG, Dorant E, Brummer RJ, et al. Appendectomy and the risk of developing ulcerative colitis or Crohn’s disease: results of a large case-control study. South Limburg Inflammatory Bowel Disease Study Group. Gastroenterology. 1997;113(2):377–82.

    CAS  PubMed  Google Scholar 

  56. Koutroubakis IE, Vlachonikolis IG. Appendectomy and the development of ulcerative colitis: results of a metaanalysis of published case-control studies. Am J Gastroenterol. 2000;95(1):171–6.

    CAS  PubMed  Google Scholar 

  57. Frisch M, Pedersen BV, Andersson RE. Appendicitis, mesenteric lymphadenitis, and subsequent risk of ulcerative colitis: cohort studies in Sweden and Denmark. BMJ. 2009;338:b716.

    PubMed  PubMed Central  Google Scholar 

  58. Farmer RG, Michener WM, Mortimer EA. Studies of family history among patients with inflammatory bowel disease. Clin Gastroenterol. 1980;9(2):271–7.

    CAS  PubMed  Google Scholar 

  59. Peeters M, Nevens H, Baert F, et al. Familial aggregation in Crohn’s disease: increased age-adjusted risk and concordance in clinical characteristics. Gastroenterology. 1996;111(3):597–603.

    CAS  PubMed  Google Scholar 

  60. Colombel JF, Grandbastien B, Gower-Rousseau C, et al. Clinical characteristics of Crohn’s disease in 72 families. Gastroenterology. 1996;111(3):604–7.

    CAS  PubMed  Google Scholar 

  61. Satsangi J, Grootscholten C, Holt H, Jewell DP. Clinical patterns of familial inflammatory bowel disease. Gut. 1996;38(5):738–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bayless TM, Tokayer AZ, Polito II JM, Quaskey SA, Mellits ED, Harris ML. Crohn’s disease: concordance for site and clinical type in affected family members—potential hereditary influences. Gastroenterology. 1996;111(3):573–9.

    CAS  PubMed  Google Scholar 

  63. Russell RK, Satsangi J. Does IBD run in families? Inflamm Bowel Dis. 2008;14 Suppl 2:S20–1.

    PubMed  Google Scholar 

  64. Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K. Family and twin studies in inflammatory bowel disease. World J Gastroenterol. 2006;12(23):3668–72.

    PubMed  PubMed Central  Google Scholar 

  65. Parkes M, Jewell D. Ulcerative colitis and Crohns disease: molecular genetics and clinical implications. Expert Rev Mol Med. 2001;2001:1–18.

    CAS  PubMed  Google Scholar 

  66. Cho JH, Abraham C. Inflammatory bowel disease genetics: Nod2. Ann Rev Med. 2007;58:401–16.

    CAS  PubMed  Google Scholar 

  67. Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet. 2005;366(9490):1036–44.

    CAS  PubMed  Google Scholar 

  68. Bentley DR. The human genome project—an overview. Med Res Rev. 2000;20(3):189–96.

    CAS  PubMed  Google Scholar 

  69. The International Hapmap Project. 2014; http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap27_B36/#search. Accessed 1 June 2014.

  70. Budarf ML, Labbe C, David G, Rioux JD. GWA studies: rewriting the story of IBD. Trends Genet. 2009;25(3):137–46.

    CAS  PubMed  Google Scholar 

  71. Ishihara S, Aziz MM, Yuki T, Kazumori H, Kinoshita Y. Inflammatory bowel disease: review from the aspect of genetics. J Gastroenterol. 2009;44(11):1097–108.

    PubMed  Google Scholar 

  72. Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol. 2008;8(8):631–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. National Human Genome Research Institute NIoH. http://www.genome.gov/sequencingcosts/. Accessed 1 June 2014.

  74. Mardis ER. A decade’s perspective on DNA sequencing technology. Nature. 2011;470(7333):198–203.

    CAS  PubMed  Google Scholar 

  75. Lee JC, Parkes M. 100 genes for IBD… whatever next!? Inflamm Bowel Dis. 2011;11(3):103–11.

    Google Scholar 

  76. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Santaolalla R, Abreu MT. Innate immunity in the small intestine. Curr Opin Gastroenterol. 2012;28(2):124–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cader MZ, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut. 2013;62(11):1653–64.

    CAS  PubMed  Google Scholar 

  79. Petersen HJ, Smith AM. The role of the innate immune system in granulomatous disorders. Front Immunol. 2013;4:120.

    PubMed  PubMed Central  Google Scholar 

  80. Wehkamp J, Stange EF. Paneth’s disease. J Crohn’s Colitis. 2010;4(5):523–31.

    Google Scholar 

  81. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol. 2012;590(Pt 5):1035–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet. 2005;6(5):376–88.

    CAS  PubMed  Google Scholar 

  83. Lucas K, Maes M. Role of the Toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48(1):190–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cario E. Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis. 2010;16(9):1583–97.

    PubMed  Google Scholar 

  85. Nys K, Agostinis P, Vermeire S. Autophagy: a new target or an old strategy for the treatment of Crohn’s disease? Nat Rev Gastroenterol Hepatol. 2013;10(7):395–401.

    CAS  PubMed  Google Scholar 

  86. Stappenbeck TS, Rioux JD, Mizoguchi A, et al. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy. 2011;7(4):355–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Eksteen B, Liaskou E, Adams DH. Lymphocyte homing and its role in the pathogenesis of IBD. Inflamm Bowel Dis. 2008;14(9):1298–312.

    PubMed  Google Scholar 

  88. Mann ER, McCarthy NE, Peake ST, et al. Skin- and gut-homing molecules on human circulating gammadelta T cells and their dysregulation in inflammatory bowel disease. Clin Exp Immunol. 2012;170(2):122–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Koizumi M, King N, Lobb R, Benjamin C, Podolsky DK. Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology. 1992;103(3):840–7.

    CAS  PubMed  Google Scholar 

  90. Janse M, Lamberts LE, Franke L, et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology. 2011;53(6):1977–85.

    CAS  PubMed  Google Scholar 

  91. Farache J, Zigmond E, Shakhar G, Jung S. Contributions of dendritic cells and macrophages to intestinal homeostasis and immune defense. Immunol Cell Biol. 2013;91(3):232–9.

    CAS  PubMed  Google Scholar 

  92. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8(6):458–66.

    CAS  PubMed  Google Scholar 

  93. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33.

    CAS  PubMed  Google Scholar 

  94. Plevy SE, Targan SR. Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology. 2011;140(6):1838–46.

    PubMed  Google Scholar 

  95. Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut. 2009;58(8):1152–67.

    CAS  PubMed  Google Scholar 

  96. Poritz LS, Harris III LR, Kelly AA, Koltun WA. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci. 2011;56(10):2802–9. doi: 10.1007/s10620-011-1688-9. Epub 2011 Jul 12.

  97. McCole DF. IBD candidate genes and intestinal barrier regulation. Inflamm Bowel Dis. 2014;20(10):1829–49.

    PubMed  Google Scholar 

  98. Vivinus-Nebot M, Frin-Mathy G, Bzioueche H, et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut. 2014;63(5):744–52.

    CAS  PubMed  Google Scholar 

  99. Waterman M, Xu W, Stempak JM, et al. Distinct and overlapping genetic loci in Crohn’s disease and ulcerative colitis: correlations with pathogenesis. Inflamm Bowel Dis. 2011;17(9):1936–42.

    PubMed  Google Scholar 

  100. Biancheri P, Di Sabatino A, Rovedatti L, et al. Effect of tumor necrosis factor-alpha blockade on mucosal addressin cell-adhesion molecule-1 in Crohn’s disease. Inflamm Bowel Dis. 2013;19(2):259–64.

    PubMed  Google Scholar 

  101. Niess JH. Role of mucosal dendritic cells in inflammatory bowel disease. World J Gastroenterol. 2008;14(33):5138–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ueno A, Jijon H, Traves S, et al. Opposing effects of smoking in ulcerative colitis and Crohn’s disease may be explained by differential effects on dendritic cells. Inflamm Bowel Dis. 2014;20(5):800–10.

    PubMed  Google Scholar 

  103. Wenzel UA, Magnusson MK, Rydstrom A, et al. Spontaneous colitis in muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis. PloS one. 2014;9(6), e100217.

    PubMed  PubMed Central  Google Scholar 

  104. Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract. 2013;2013:431231.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Van Limbergen J, Wilson DC, Satsangi J. The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet. 2009;10:89–116.

    PubMed  Google Scholar 

  106. Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998;273(45):29745–53.

    CAS  PubMed  Google Scholar 

  107. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140(1):12–9.

    CAS  PubMed  Google Scholar 

  108. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008;88(10):1110–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Reuter BK, Pizarro TT. Mechanisms of tight junction dysregulation in the SAMP1/YitFc model of Crohn’s disease-like ileitis. Ann N Y Acad Sci. 2009;1165:301–7.

    CAS  PubMed  Google Scholar 

  110. Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol. 2001;159(6):2001–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Piazza F, Valens J, Lagasse E, Schindler C. Myeloid differentiation of FdCP1 cells is dependent on Stat5 processing. Blood. 2000;96(4):1358–65.

    CAS  PubMed  Google Scholar 

  112. Snow JW, Abraham N, Ma MC, Herndier BG, Pastuszak AW, Goldsmith MA. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J Immunol. 2003;171(10):5042–50.

    CAS  PubMed  Google Scholar 

  113. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3(11):900–11.

    CAS  PubMed  Google Scholar 

  114. Neufert C, Pickert G, Zheng Y, et al. Activation of epithelial STAT3 regulates intestinal homeostasis. Cell Cycle. 2010;9(4):652–5.

    CAS  PubMed  Google Scholar 

  115. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stoll M, Corneliussen B, Costello CM, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004;36(5):476–80.

    CAS  PubMed  Google Scholar 

  117. Lin Z, Poritz L, Franke A, et al. Genetic association of DLG5 R30Q with familial and sporadic inflammatory bowel disease in men. Dis Markers. 2009;27(5):193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yamamoto-Furusho JK, Mendivil-Rangel EJ, Fonseca-Camarillo G, Villeda-Espinoza MA, Barreto-Zuniga R. Increased expression of discs large homolog 5 gene (DLG5) in ulcerative colitis patients compared to healthy individuals. Inflamm Bowel Dis. 2011;17(7):1639.

    PubMed  Google Scholar 

  119. Genin E, Schumacher M, Roujeau JC, et al. Genome-wide association study of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Europe. Orphanet J Rare Dis. 2011;6:52.

    PubMed  PubMed Central  Google Scholar 

  120. Zhu KJ, Lv YM, Yin XY, et al. Psoriasis regression analysis of MHC loci identifies shared genetic variants with vitiligo. PloS one. 2011;6(11), e23089.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Edwards TL, Shrubsole MJ, Cai Q, et al. Genome-wide association study identifies possible genetic risk factors for colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 2013;22(7):1219–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Steingart RA, Heldenberg E, Pinhasov A, Brenneman DE, Fridkin M, Gozes I. A vasoactive intestinal peptide receptor analog alters the expression of homeobox genes. Life Sci. 2002;71(21):2543–52.

    CAS  PubMed  Google Scholar 

  123. Yasuda H, Tanaka K, Okita Y, et al. CD133, OCT4, and NANOG in ulcerative colitis-associated colorectal cancer. Oncol Lett. 2011;2(6):1065–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121(3):465–77.

    CAS  PubMed  Google Scholar 

  125. Connelly T, Sanders B, Berg A, Harris III L, Tinsley A, Williams E, Koltun W. Genetic predictors of quality of life post ileal anal pouch anastomosis for ulcerative colitis (abstract). Inflamm Bowel Dis. 2013;19 Suppl 1:S1–132.

    Google Scholar 

  126. Barrett JC, Lee JC, Lees CW, et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet. 2009;41(12):1330–4.

    CAS  PubMed  Google Scholar 

  127. Schmehl K, Florian S, Jacobasch G, Salomon A, Korber J. Deficiency of epithelial basement membrane laminin in ulcerative colitis affected human colonic mucosa. Int J Colorectal Dis. 2000;15(1):39–48.

    CAS  PubMed  Google Scholar 

  128. Fisher SA, Tremelling M, Anderson CA, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet. 2008;40(6):710–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wellcome Trust Case Control Consortium, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Google Scholar 

  130. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68(12):7010–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.

    CAS  PubMed  Google Scholar 

  132. McCauley JL, Abreu MT. Genetics in diagnosing and managing inflammatory bowel disease. Gastroenterol Clin North Am. 2012;41(2):513–22.

    PubMed  Google Scholar 

  133. Broom OJ, Widjaya B, Troelsen J, Olsen J, Nielsen OH. Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol. 2009;158(3):272–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kosovac K, Brenmoehl J, Holler E, et al. Association of the NOD2 genotype with bacterial translocation via altered cell-cell contacts in Crohn’s disease patients. Inflamm Bowel Dis. 2010;16(8):1311–21.

    PubMed  Google Scholar 

  135. Bonen DK, Ogura Y, Nicolae DL, et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology. 2003;124(1):140–6.

    CAS  PubMed  Google Scholar 

  136. Palomino-Morales RJ, Oliver J, Gomez-Garcia M, et al. Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun. 2009;10(4):356–64.

    CAS  PubMed  Google Scholar 

  137. Massey DC, Parkes M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn’s disease. Autophagy. 2007;3(6):649–51.

    CAS  PubMed  Google Scholar 

  138. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science. 2006;313(5792):1438–41.

    CAS  PubMed  Google Scholar 

  139. Lu XC, Tao Y, Wu C, et al. Association between variants of the autophagy related gene—IRGM and susceptibility to Crohn’s disease and ulcerative colitis: a meta-analysis. PloS one. 2013;8(11), e80602.

    PubMed  PubMed Central  Google Scholar 

  140. Sehgal R, Berg A, Polinski JI, et al. Mutations in IRGM are associated with more frequent need for surgery in patients with ileocolonic Crohn’s disease. Dis Colon Rectum. 2012;55(2):115–21.

    PubMed  Google Scholar 

  141. Ahmad T, Marshall SE, Jewell D. Genetics of inflammatory bowel disease: the role of the HLA complex. World J Gastroenterol. 2006;12(23):3628–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Stokkers PC, Reitsma PH, Tytgat GN, van Deventer SJ. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut. 1999;45(3):395–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Silverberg MS, Mirea L, Bull SB, et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm Bowel Dis. 2003;9(1):1–9.

    PubMed  Google Scholar 

  144. Hancock L, Beckly J, Geremia A, et al. Clinical and molecular characteristics of isolated colonic Crohn’s disease. Inflamm Bowel Dis. 2008;14(12):1667–77.

    PubMed  Google Scholar 

  145. Bamias G, Martin III C, Marini M, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 2003;171(9):4868–74.

    CAS  PubMed  Google Scholar 

  146. Yang CR, Hsieh SL, Teng CM, Ho FM, Su WL, Lin WW. Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res. 2004;64(3):1122–9.

    CAS  PubMed  Google Scholar 

  147. Meylan F, Song YJ, Fuss I, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4(2):172–85.

    CAS  PubMed  Google Scholar 

  148. Young HA, Tovey MG. TL1A: a mediator of gut inflammation. Proc Natl Acad Sci U S A. 2006;103(22):8303–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Michelsen KS, Thomas LS, Taylor KD, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PloS one. 2009;4(3), e4719.

    PubMed  PubMed Central  Google Scholar 

  150. Jones GW, Stumhofer JS, Foster T, et al. Naive and activated T cells display differential responsiveness to TL1A that affects Th17 generation, maintenance, and proliferation. Faseb J. 2011;25(1):409–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cavallini C, Lovato O, Bertolaso A, et al. The TNF-family cytokine TL1A inhibits proliferation of human activated B cells. PloS one. 2013;8(4), e60136.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kang YJ, Kim WJ, Bae HU, et al. Involvement of TL1A and DR3 in induction of pro-inflammatory cytokines and matrix metalloproteinase-9 in atherogenesis. Cytokine. 2005;29(5):229–35.

    CAS  PubMed  Google Scholar 

  153. Connelly TM, Berg AS, Hegarty JP, et al. The TNFSF15 gene single nucleotide polymorphism rs7848647 is associated with surgical diverticulitis. Ann Surg. 2014;259(6):1132–7.

    PubMed  Google Scholar 

  154. Liao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011;12(6):551–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. O’Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol. 2011;11(4):239–50.

    PubMed  PubMed Central  Google Scholar 

  156. Budagian V, Bulanova E, Paus R, Bulfone-Paus S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 2006;17(4):259–80.

    CAS  PubMed  Google Scholar 

  157. Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26(3):371–81.

    CAS  PubMed  Google Scholar 

  158. Gilbert S, Zhang R, Denson L, et al. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol Med. 2012;4(2):109–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pandiyan P, Yang XP, Saravanamuthu SS, et al. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. J Immunol. 2012;189(9):4237–46.

    CAS  PubMed  Google Scholar 

  160. Mao M, Biery MC, Kobayashi SV, et al. T lymphocyte activation gene identification by coregulated expression on DNA microarrays. Genomics. 2004;83(6):989–99.

    CAS  PubMed  Google Scholar 

  161. Eyre S, Hinks A, Bowes J, et al. Overlapping genetic susceptibility variants between three autoimmune disorders: rheumatoid arthritis, type 1 diabetes and coeliac disease. Arthritis Res Ther. 2010;12(5):R175.

    PubMed  PubMed Central  Google Scholar 

  162. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Festen EA, Goyette P, Green T, et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet. 2011;7(1), e1001283.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Toedter G, Li K, Marano C, et al. Gene expression profiling and response signatures associated with differential responses to infliximab treatment in ulcerative colitis. Am J Gastroenterol. 2011;106(7):1272–80.

    CAS  PubMed  Google Scholar 

  165. Cernuda-Morollon E, Ridley AJ. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res. 2006;98(6):757–67.

    CAS  PubMed  Google Scholar 

  166. Ligeti E, Welti S, Scheffzek K. Inhibition and termination of physiological responses by GTPase activating proteins. Physiol Rev. 2012;92(1):237–72.

    CAS  PubMed  Google Scholar 

  167. Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003;13(1):13–22.

    CAS  PubMed  Google Scholar 

  168. Connelly TM, Sehgal R, Berg AS, et al. Mutation in TAGAP is protective of anal sepsis in ileocolic Crohn’s disease. Dis Colon Rectum. 2012;55(11):1145–52.

    PubMed  Google Scholar 

  169. Connelly TM, Berg AS, Harris III LR, et al. T-cell activation Rho GTPase-activating protein expression varies with inflammation location and severity in Crohn’s disease. J Surg Res. 2014;190(2):457–64.

    CAS  PubMed  Google Scholar 

  170. Begue B, Verdier J, Rieux-Laucat F, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol. 2011;106(8):1544–55.

    CAS  PubMed  Google Scholar 

  171. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Shih DQ, Targan SR, McGovern D. Recent advances in IBD pathogenesis: genetics and immunobiology. Curr Gastroenterol Rep. 2008;10(6):568–75.

    PubMed  PubMed Central  Google Scholar 

  173. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53.

    CAS  PubMed  Google Scholar 

  174. Cravo ML, Ferreira PA, Sousa P, et al. IL23R polymorphisms influence phenotype and response to therapy in patients with ulcerative colitis. Eur J Gastroenterol Hepatol. 2014;26(1):26–32.

    CAS  PubMed  Google Scholar 

  175. Averboukh F, Ziv Y, Kariv Y, et al. Colorectal carcinoma in inflammatory bowel disease: a comparison between Crohn’s and ulcerative colitis. Colorectal Dis. 2011;13(11):1230–5.

    CAS  PubMed  Google Scholar 

  176. Goldstone R, Itzkowitz S, Harpaz N, Ullman T. Progression of low-grade dysplasia in ulcerative colitis: effect of colonic location. Gastrointest Endosc. 2011;74(5):1087–93.

    PubMed  Google Scholar 

  177. Bergeron V, Vienne A, Sokol H, et al. Risk factors for neoplasia in inflammatory bowel disease patients with pancolitis. Am J Gastroenterol. 2010;105(11):2405–11.

    PubMed  Google Scholar 

  178. Gillen CD, Andrews HA, Prior P, Allan RN. Crohn’s disease and colorectal cancer. Gut. 1994;35(5):651–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Svrcek M, Cosnes J, Beaugerie L, et al. Colorectal neoplasia in Crohn’s colitis: a retrospective comparative study with ulcerative colitis. Histopathology. 2007;50(5):574–83.

    CAS  PubMed  Google Scholar 

  180. Ullman T, Croog V, Harpaz N, Sachar D, Itzkowitz S. Progression of flat low-grade dysplasia to advanced neoplasia in patients with ulcerative colitis. Gastroenterology. 2003;125(5):1311–9.

    PubMed  Google Scholar 

  181. Befrits R, Ljung T, Jaramillo E, Rubio C. Low-grade dysplasia in extensive, long-standing inflammatory bowel disease: a follow-up study. Dis Colon Rectum. 2002;45(5):615–20.

    CAS  PubMed  Google Scholar 

  182. Blackstone MO, Riddell RH, Rogers BHG, Levin B. Dysplasia-associated lesion or mass (dalm) detected by colonoscopy in long-standing ulcerative-colitis—an indication for colectomy. Gastroenterology. 1981;80(2):366–74.

    CAS  PubMed  Google Scholar 

  183. Thomas T, Abrams KA, Robinson RJ, Mayberry JF. Meta-analysis: cancer risk of low-grade dysplasia in chronic ulcerative colitis. Aliment Pharmacol Ther. 2007;25(6):657–68.

    CAS  PubMed  Google Scholar 

  184. Itzkowitz SH, Yio XY. Inflammation and cancer—IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol. 2004;287(1):G7–17.

    CAS  Google Scholar 

  185. Goel GA, Kandiel A, Achkar JP, Lashner B. Molecular pathways underlying IBD-associated colorectal neoplasia: therapeutic implications. Am J Gastroenterol. 2011;106(4):719–30.

    PubMed  Google Scholar 

  186. Tarmin L, Yin J, Harpaz N, et al. Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res. 1995;55(10):2035–8.

    CAS  PubMed  Google Scholar 

  187. Connelly TM, Koltun WA. The cancer “fear” in IBD patients: is it still REAL? J Gastrointest Surg. 2014;18(1):213–8.

    CAS  PubMed  Google Scholar 

  188. Fukata M, Shang L, Santaolalla R, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2011;17(7):1464–73.

    PubMed  Google Scholar 

  189. Hartnett L, Egan LJ. Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis. 2012;33(4):723–31.

    CAS  PubMed  Google Scholar 

  190. Martini M, Ferrara AM, Giachelia M, et al. Association of the OCTN1/1672T variant with increased risk for colorectal cancer in young individuals and ulcerative colitis patients. Inflamm Bowel Dis. 2012;18(3):439–48.

    PubMed  Google Scholar 

  191. Connelly TM, Berg AS, Harris III LR, et al. Ulcerative colitis neoplasia is not associated with common inflammatory bowel disease single-nucleotide polymorphisms. Surgery. 2014;156:253–62.

    PubMed  Google Scholar 

  192. Wheeler JM, Kim HC, Efstathiou JA, Ilyas M, Mortensen NJ, Bodmer WF. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut. 2001;48(3):367–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Houlston RS, Webb E, Broderick P, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008;40(12):1426–35.

    CAS  PubMed  Google Scholar 

  194. Pekow J, Dougherty U, Huang Y, et al. Gene signature distinguishes patients with chronic ulcerative colitis harboring remote neoplastic lesions. Inflamm Bowel Dis. 2013;19(3):461–70.

    PubMed  Google Scholar 

  195. Kim TO, Park J, Kang MJ, et al. DNA hypermethylation of a selective gene panel as a risk marker for colon cancer in patients with ulcerative colitis. Int J Mol Med. 2013;31(5):1255–61.

    CAS  PubMed  Google Scholar 

  196. Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96.

    CAS  PubMed  Google Scholar 

  197. Koltun W, Connelly T, Tinsley A. Inflammatory bowel disease: general conditions, approaches to medical management, and the future of surgery in gastrointestinal tract and abdomen gastrointestinal tract and abdomen. Scientific. In: Ashley SW, editor. American surgery. Hamilton: Decker Intellectual Properties; 2014.

    Google Scholar 

  198. Farrell RJ, Murphy A, Long A, et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology. 2000;118(2):279–88.

    CAS  PubMed  Google Scholar 

  199. Cucchiara S, Latiano A, Palmieri O, et al. Polymorphisms of tumor necrosis factor-alpha but not MDR1 influence response to medical therapy in pediatric-onset inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44(2):171–9.

    CAS  PubMed  Google Scholar 

  200. Dubinsky MC, Kugathasan S, Kwon S, et al. Multidimensional prognostic risk assessment identifies association between IL12B variation and surgery in Crohn’s disease. Inflamm Bowel Dis. 2013;19(8):1662–70.

    PubMed  Google Scholar 

  201. Seiderer J, Brand S, Herrmann KA, et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn’s disease in clinical practice: results of a prospective study. Inflamm Bowel Dis. 2006;12(12):1114–21.

    PubMed  Google Scholar 

  202. Tyler AD, Milgrom R, Stempak JM, et al. The NOD2insC polymorphism is associated with worse outcome following ileal pouch-anal anastomosis for ulcerative colitis. Gut. 2013;62(10):1433–9.

    CAS  PubMed  Google Scholar 

  203. Sehgal R, Berg A, Hegarty JP, et al. NOD2/CARD15 mutations correlate with severe pouchitis after ileal pouch-anal anastomosis. Dis Colon Rectum. 2010;53(11):1487–94.

    PubMed  Google Scholar 

  204. Sehgal R, Berg A, Polinski JI, et al. Genetic risk profiling and gene signature modeling to predict risk of complications after IPAA. Dis Colon Rectum. 2012;55(3):239–48.

    PubMed  Google Scholar 

  205. Nissen LH, Nagtegaal ID, de Jong DJ, et al. Epstein-Barr virus in inflammatory bowel disease: the spectrum of intestinal lymphoproliferations. J Crohn’s Colitis. 2015;9(5):398–403.

    Google Scholar 

  206. Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis. 2015;21(6):1219–28.

    Google Scholar 

  207. Mukhopadhya I, Hansen R, Meharg C, et al. The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes Infect. 2015;17(4):304–10.

    Google Scholar 

  208. Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol. 2014;48(6):513–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Hoarau G, Colombel JF, Poulain D, Sendid B. Fungal intestinal flora in the development of Crohn’s disease. Med Sci. 2013;29(8–9):691–3.

    Google Scholar 

  210. Hubbard VM, Cadwell K. Viruses, autophagy genes, and Crohn’s disease. Viruses. 2011;3(7):1281–311.

    PubMed  PubMed Central  Google Scholar 

  211. Missaghi B, Barkema HW, Madsen KL, Ghosh S. Perturbation of the human microbiome as a contributor to inflammatory bowel disease. Pathogens. 2014;3(3):510–27.

    PubMed  PubMed Central  Google Scholar 

  212. Bringiotti R, Ierardi E, Lovero R, Losurdo G, Di Leo A, Principi M. Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J Gastrointest Pathophysiol. 2014;5(4):550–9.

    PubMed  PubMed Central  Google Scholar 

  213. Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):6–21.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Koltun M.D., F.A.C.S., F.A.C.R.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ASCRS (American Society of Colon and Rectal Surgeons)

About this chapter

Cite this chapter

Connelly, T.M., Koltun, W.A. (2016). Inflammatory Bowel Disease: Pathobiology. In: Steele, S.R., Hull, T.L., Read, T.E., Saclarides, T.J., Senagore, A.J., Whitlow, C.B. (eds) The ASCRS Textbook of Colon and Rectal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-25970-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25970-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25968-0

  • Online ISBN: 978-3-319-25970-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics