Skip to main content

Comparison of 2D & 3D Parameter-Based Models in Urban Fine Dust Distribution Modelling

  • Chapter
  • First Online:
Advances in 3D Geoinformation

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

In the present study two Land Use Regression Models for the estimation of urban fine dust distribution were established and compared. The first model used 2D parameters derived from an Open Street Map project data (OSM) and the second model used 3D parameters derived from a CityGML-based 3D city model. Both models predict fine-dust concentrations by using urban morphological (2D resp. 3D) and additional semantic parameters. The models were applied to a 2 km2 study area in Berlin, Germany. The 2D-LUR model explained 84 % of the variance of TNC for the full data set with root mean square error (RMSE) of 3284 cm−3 while the 3D-LUR explained 79 % of the variance with an RMSE of 3534 cm−3. Both models are capable to depict the spatial variation of TNC across the study area and showed relatively similar deviation from the measured TNC. The 3D-LUR needed less parameters than the 2D-LUR model. Furthermore, the semantic parameters (e.g. streets type) played a significant role in both models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy, R. C., Allen, R. W., McKendry, I. G., & Brauer, M. A. (2013). Land use regression model for ultrafine particles in vancouver, Canada. Environmental Science and Technology, 47, 5217–5225.

    Article  Google Scholar 

  • Abhijith, K. V., & Gokhale, S. (2015). Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons. Environmental Pollution, 204, 99–108.

    Article  Google Scholar 

  • Arain, A. M., Blair, R., Finkelstein, N., Brook, R. J., Sahsuvaroglu, T., Beckerman, B., et al. (2007). The use of the wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmospheric Environment, 41, 3453–3464.

    Article  Google Scholar 

  • Burghardt, R. (2014). Development of an ArcGIS extension to model urban climate factors.

    Google Scholar 

  • Brand, L., & Löwner, M.-O. (2014). Parametrisierung und Identifikation urbaner Straßenkreuzungen im Kontext der Feinstaubmodellierung. Parameterization an identification of street crossings in the context of fine dust modelling. Proceedings of the joint meeting of DGfK, DGPF, GfGI, and GiN, 26–28/03/2014, Hamburg, Germany.

    Google Scholar 

  • Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., et al. (2003). Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems. Epidemiology, 14, 228–239.

    Google Scholar 

  • Briggs, D. J., de Hough, C., Gulliver, J., Wills, J., Elliott, P., Kingham, S., et al. (2000). A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Science of the Total Environment, 253, 151–167.

    Article  Google Scholar 

  • Burtscher, H., & Schüepp, K. (2012). The occurrence of ultrafine particles in the specific environment of children. Paediatric Respiratory Reviews, 13, 89–94.

    Article  Google Scholar 

  • Chen, L., Du, S., Bei, Z., Kong, S., You, Y., & Han, B., et al. (2010). Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China. Journal of Zhejiang University Science A (Appl Phys & Eng), 11, 857–867.

    Google Scholar 

  • Czerwinski, A., Gröger, G., Reichert, S., & Plümer, L. (2013). Qualitätssicherung einer 3D-GDI - EU-Umgebungslärmkartierung Stufe 2 in NRW. Quality management of a 3D-SDI – phase 2 of the EU ambient noise mapping in NRW. Zeitschrift für Geodäsie, Geoinformation und Landmanagement.

    Google Scholar 

  • Gàl, T., & Unger, J. (2009). Detection of ventilation paths using high resolution roughness parameter mapping in a large urban area. Building and Environment, 44, 198–206.

    Article  Google Scholar 

  • Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schürch, S., Kreyling, W., & Schulz, H., et al. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 113, 1555–1560.

    Google Scholar 

  • Ghassoun, Y., Ruths, M., Löwner, M.-O., & Weber, S. (2015a). Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling. Science of the Total Environment.

    Google Scholar 

  • Ghassoun, Y., Löwner, M.-O., & Weber, S. (2015b). Exploring the Benefits of 3D city Models in the Field of Urban Particles Distribution Modelling—a Comparison of Model Results. Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P. V., Benner, J., & Haefele, K.H. (2015) 3D Geoinformation Science, The 529 Selected Papers of the 3D GeoInfo, Lecture Notes in Geoinfmation and Cartography, 530, 193–205.

    Google Scholar 

  • Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K.-H. (2012). OGC City Geography Markup Language (CityGML) encoding standard, version 2.0, OGC Doc No. 12–019, Open Geospatial Consortium.

    Google Scholar 

  • Haklay, M. (2009). Beyond good enough? Spatial data quality and OpenStreetMap data. In: State of the Map Conference 2009, Amsterdam. http://de.slideshare.net/mukih/beyond-good-enough-spatial-data-quality-and-openstreetmap-data?qid=1f655291-2d6c-48ce-9ced-1af8456dc713&v=qf1&b=&from_search=12 Published on 11. Juli 2009.

  • Heal, M. R., Kumar, P., & Harrison, R. M. (2012). Particles, air quality, policy and health. Chemical Society Reviews, 41, 6606–6630.

    Article  Google Scholar 

  • HEI. (2013). Review Panel on Ultrafine Particles—Understanding the Health Effects of Ambient Ultrafine Particles. HEI Perspectives 3. Health Effects Institute, Boston, MA.

    Google Scholar 

  • Henderson, S., Beckerman, B., Jerrett, M., Brauer, M. (2007). Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science and Technology, 41, 2422–2428.

    Google Scholar 

  • Ho, C-C., Chan, C-C., Cho, C-W., Lin, H-I., Lee, J-H., Wu, C-F. (2015). Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environment, 104, 256–263.

    Google Scholar 

  • Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., et al. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42, 7561–7578.

    Article  Google Scholar 

  • Jerrett, M. (2011). Spatiotemporal Analysis of Air Pollution and Mortality in California Based on the American Cancer Society Cohort 2011; Final Report.

    Google Scholar 

  • Jokar Arsanjani, J., Mooney, P., Helbich, M., & Zipf, A. (2015). An exploration of future of the contributions to OpenStraatMap and development of a Contribution Index. Transactions in GIS, volume and issue pending, pp. pending. Wiley. doi:10.111/tgis.12139.

  • Kaden, R., & Kolbe, T. H. (2013). City-Wide Total Energy Demand Estimation of Buildings using Semantic 3D City Models and Statistical Data. Kongress-/ Buchtitel: Proceeding of the 8th International 3D GeoInfo Conference. Band/ Teilband: II-2/W1. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2013.

    Google Scholar 

  • Kashima, S., Yorifuji, T., Tsuda, T., & Doi, H. (2009). Application of land use regression to regulatory air quality data in Japan. Science of the Total Environment, 407, 3055–3062.

    Google Scholar 

  • Kim, Y., & Guldmann, J.-M. (2011). Impact of traffic flows and wind directions on air pollution concentrations in Seoul. Korea. Atmospheric Environment, 45, 2803–2810.

    Article  Google Scholar 

  • Li, X., Liu, W., Chen, Z., Zeng, G., Hu, C., León, T., et al. (2015). The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO2 and PM10 concentrations. Atmospheric Environment, 103, 18–24.

    Article  Google Scholar 

  • Löwner, M.-O., Casper, E., Becker, T., Benner, J., Gröger, G., Gruber, U., et al. (2013). CityGML 2.0 – ein internationaler Standard für 3D-Stadtmodelle, Teil 2: CityGML in der Praxis. CityGML 2.0 – an international standard for 3D city models, part 2: CityGML in practice. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 2, 131–143.

    Google Scholar 

  • Mercer, D. L., Szpiro, A. A., Sheppard, L., Lindström, J., Adar, S., Allen, R., et al. (2011). Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Atmospheric Environment, 45, 4412–4420.

    Article  Google Scholar 

  • Ming, W., Qingquan, L., Qingwu, H., & Meng, Z. (2013). Quality analysis of open street map data. International archives of the photogrammetry, remote sensing and spatial information sciences, Volume XL-2/W1, 2013. In: 8th International Symposium on Spatial Data Quality, 30 May-1 June 2013, Hong Kong.

    Google Scholar 

  • Morawska, L., Ristovski, Z., Jayaratne, E. R., Keogh, D. U., & Ling, X. (2008). Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmospheric Environment, 42, 8113–8138.

    Article  Google Scholar 

  • Over, M., Schilling, A., Neubauer, S., & Zipf, A. (2010). generating web-based 3D city models from OpenStreetMap: The current situation in Germany. Computers, Environment and Urban Systems, 34, 496–507.

    Article  Google Scholar 

  • Rivera, M., Basagaña, X., Aguilera, I., Agis, D., Bouso, L., Foraster, M., et al. (2012). Spatial distribution of ultrafine particles in urban settings: A land use regression model. Atmospheric Environment, 54, 657–666.

    Article  Google Scholar 

  • Sabaliaukas, K., Jeong, C.-H., Yao, X., Reali, C., Sun, T., & Evans, G. (2015). Development of a Land-use Regression Model for Ultrafine Particles in Toronto. Canada. Atmospheric Environment,. doi:10.1016/j.atmosenv.2015.02.018.

    Google Scholar 

  • Saraswat, A., Apte, S. J., Kandlikar, M., Brauer, M., Henderson, B. S., & Marshall, D. J. (2013). Spatiotemporal Land Use Regression Models of Fine, Ultrafine, and Black Carbon Particulate Matter in New Delhi. India. Environ. Sci. Technol., 47, 12903–12911.

    Article  Google Scholar 

  • Tang, R., Blangiardo, M., & Gulliver, J. (2013). Using Building Heights and Street Configuration to Enhance Intraurban PM10, NOX, and NO2 Land Use Regression Models. Environmental Science and Technology, 47, 11643–11650.

    Article  Google Scholar 

  • Vardoulakis, S., Gonzalez-Flesca, N., & Fisher, B. E. A. (2012). Assessment of trafic-related air pollution in two street canyons in Paris: implications for exposure studies. Atmospheric Environment, 36, 1025–1039.

    Article  Google Scholar 

  • WHO. (2013). Review of evidence on health aspects of air pollution—REVIHAAP Project—Technical report. World Health Organization—Regional office for Europe, Copenhagen p. 300.

    Google Scholar 

  • Wong, M. S., Nichol, J. E., NG, E. Y. Y., Guilbert, E., Kwok, K. H., & To, P. H., et al. (2011). GIS Techniques for mapping urban ventilation, using frontal area index and least cost path analysis. Landscape and Urban Planning, 102(4), 245–253.

    Google Scholar 

  • Weber, S., Kordowski, K., & Kuttler, W. (2013). Variability of particle number concentration and particle size dynamics in an urban street canyon under different meteorological conditions. Science of the Total Environment, 449, 102–114.

    Article  Google Scholar 

  • Zhang, J. J. Y., Sun, L., Barrett, O., Bertazzon, S., Underwood, F. E., & Johnson, M. (2015). Development of land-use regression models for metals associated with airborne particulate matter in a North American city. Atmospheric Environment, 106, 165–177.

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the support of Stephan Weber from the institute of geoecology of the Technische Universität Braunschweig for the supply of the measurement device that was used to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Ghassoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ghassoun, Y., Löwner, M.O. (2017). Comparison of 2D & 3D Parameter-Based Models in Urban Fine Dust Distribution Modelling. In: Abdul-Rahman, A. (eds) Advances in 3D Geoinformation. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-25691-7_13

Download citation

Publish with us

Policies and ethics