Skip to main content

Drug Delivery Systems for Ocular Use

  • Chapter
  • First Online:
Pharmacology of Ocular Therapeutics

Abstract

Various static and dynamic ocular barriers in conjunction with membrane transporters pose a significant challenge for ocular drug therapy. These challenges present unique opportunities for understanding the barriers and overcoming it using novel/innovative drug delivery systems. Recently in response to advent of potent and versatile therapeutic agents, the diversity of conventional ocular formulations has gradually evolved, extending well beyond simple solutions, suspensions and ointments. The field includes a variety of innovative carriers that have shown the capacity to encapsulate wide variety of drugs and macromolecules and maintain extended drug effect in targeted tissues. Vesicular carriers, polymeric and lipid nanoparticles, dendrimers, nanoplexes, nanoemulsions, cubosomes, nanoassemblies, nanomicelles and various hybrid hydrogels as well as drug delivery enhancement devices have been widely explored to overcome various hurdles. This chapter presents an overview about the importance of understanding the blood ocular barriers for developing strategies for appropriate drug delivery systems and applications of innovative carriers for ocular delivery of drugs or macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelbary G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol. 2011;16(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, Ismail NM. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv. 2014;12:1–17.

    Article  Google Scholar 

  • Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J Control Release. 2006;111:145–52.

    Article  CAS  PubMed  Google Scholar 

  • Ameeduzzafar, Ali J, Bhatnagar A, Kumar N, Ali A. Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. Int J Biol Macromol. 2014;65:479–91.

    Article  CAS  PubMed  Google Scholar 

  • Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.

    Article  CAS  PubMed  Google Scholar 

  • Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis. 2008;14:150–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19:1194–202.

    Article  CAS  PubMed  Google Scholar 

  • Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ. Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir. 2004;20(25):11264–9.

    Article  CAS  PubMed  Google Scholar 

  • Aptel F, Lafon C. Therapeutic applications of ultrasound in ophthalmology. Int J Hyperthermia. 2012;28(4):405–18.

    Article  CAS  PubMed  Google Scholar 

  • Atluri H, Anand BS, Patel J, Mitra AK. Mechanism of a model dipeptide transport across blood-ocular barriers following systemic administration. Exp Eye Res. 2004;78:815–22.

    Article  CAS  PubMed  Google Scholar 

  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.

    Article  CAS  PubMed  Google Scholar 

  • Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug strategies in ocular drug delivery. Med Chem. 2012;8(4):753–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 2006;34:322–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • BaÅŸaran E, Demirel M, Sirmagül B, Yazan Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010;27(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  • Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, Gurny R, BenEzra D, Behar-Cohen F. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58(11):1182–202.

    Article  CAS  PubMed  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995;92:7297–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardillo JA, Souza-Filho AA, Oliveira AG. Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulness for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol. 2006;81:675–82.

    Article  CAS  PubMed  Google Scholar 

  • Chang SC, Lee VH. Nasal and conjunctival contributions to the systemic absorption of topical timolol in the pigmented rabbit: implications in the design of strategies to maximize the ratio of ocular to systemic absorption. J Ocul Pharmacol. 1987;3:159–69.

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015;6(2):277–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR. Intravitreal properties of porous silicon photonic crystals a potential self-reporting intraocular drug-delivery vehicle. Br J Ophthalmol. 2008;92(5):705–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chhonker YS, Prasad YD, Chandasana H, Vishvkarma A, Mitra K, Shukla PK, Bhatta RS. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol. 2015;72:1451–8.

    Article  CAS  PubMed  Google Scholar 

  • Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed. 2012;2(2):82–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):106–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cholkar K, Trinh HM, Vadlapudi AD, Mitra AK. Synthesis and characterization of ganciclovir Long chain lipid prodrugs. Adv Ophthalmol Vis Syst. 2014;1(2):00007.

    PubMed Central  PubMed  Google Scholar 

  • Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release. 2012;160(1):96–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Contreras-Ruiz L, de la Fuente M, García-Vázquez C, Sáez V, Seijo B, Alonso MJ, Calonge M, Diebold Y. Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea. 2010;29(5):550–8.

    Article  PubMed  Google Scholar 

  • Contreras-Ruiz L, de la Fuente M, Párraga JE, López-García A, Fernández I, Seijo B, Sánchez A, Calonge M, Diebold Y. Intracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells. Mol Vis. 2011;17:279–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuevas P, Outeirino LA, Angulo J, Gimenez-Gallego G. Topical dobesilate eye drops for ophthalmic primary pterygium. BMJ Case Rep. 2012; pii: bcr1220115449.

    Google Scholar 

  • Cunha-Vaz JG. The blood-retinal barriers. Doc Ophthalmol. 1976;41:287–327.

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23:279–96.

    Article  CAS  PubMed  Google Scholar 

  • Daily MJ, Peyman GA, Fishman G. Intravitreal injection of methicillin for treatment of endophthalmitis. Am J Ophthalmol. 1973;76:343–50.

    Article  CAS  PubMed  Google Scholar 

  • Dalpiaz A, Filosa R, de Caprariis P, Conte G, Bortolotti F, Biondi C, Scatturin A, Prasad PD, Pavan B. Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int J Pharm. 2007;336(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  • DAMAD Study Group. Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy: a multicenter randomized controlled clinical trial. Diabetes. 1989;38:491–8.

    Google Scholar 

  • Dartt DA. Regulation of mucin and fluid secretion by conjunctival epithelial cells. Prog Retin Eye Res. 2002;21:555–76.

    Article  CAS  PubMed  Google Scholar 

  • Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’Shea P, Moss SE, Somavarapu S, Cordeiro MF. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small. 2014;10(8):1575–84.

    Google Scholar 

  • De Campos AM, Sánchez A, Gref R, Calvo P, Alonso MJ. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci. 2003;20:73–81.

    Article  PubMed  CAS  Google Scholar 

  • De la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008;49(5):2016–24.

    Article  PubMed  Google Scholar 

  • Dhillon B, Kamal A, Leen C. Intravitreal sustained-release ganciclovir implantation to control cytomegalovirus retinitis in AIDS. Int J Std Aids. 1998;9(4):2227–30.

    Article  Google Scholar 

  • Diebold Y, Jarrín M, Sáez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28(8):1553–64.

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z, Pan X, Li G, Wu C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82–90.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187–207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability and delivery of gatifloxacin. Invest Ophthalmol Vis Sci. 2010;51(11):5804–16.

    Article  PubMed  Google Scholar 

  • Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metab. 2004;5:507–15.

    Article  CAS  PubMed  Google Scholar 

  • Early Treatment of Diabetic Retinopathy Research Group: effects of aspirin treatment on diabetic retinopathy. Ophthalmology. 1991;98(5 Suppl):757–65.

    Google Scholar 

  • Eljarrat-Binstock E, Pe’er J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–43.

    Google Scholar 

  • El-Sousi S, Nácher A, Mura C, Catalán-Latorre A, Merino V, Merino-Sanjuán M, Díez-Sales O. Hydroxypropylmethylcellulose films for the ophthalmic delivery of diclofenac sodium. J Pharm Pharmacol. 2013;65(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375–412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fazly Bazzaz BS, Khameneh B, Jalili-Behabadi MM, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont Lens Anterior Eye. 2014;37(3):149–52.

    Article  PubMed  Google Scholar 

  • Feghhi M, Farrahi F, Abbaspour M, Takhtaeian A. Effect of adding oral calcium dobesilate to laser photocoagulation on the macular thickness in patients with diabetic macular edema: a randomized clinical trial. Adv Pharm Bull. 2014;4:375–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Google Scholar 

  • Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, Gan Y. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1–2):179–87.

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18(5–6):290–7.

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Jain GK, Nirmal J, Kohli K. Topical tacrolimus nanoemulsion, a promising therapeutic approach for uveitis. Med Hypotheses. 2013;81(5):901–4.

    Article  CAS  PubMed  Google Scholar 

  • Garg V, Jain GK, Jayabalan N, Warsi MH, Ahmad FJ, Khar RK. Development of poly lactide-co-glycolide nanodispersions for enhanced ocular delivery of moxifloxacin. Sci Adv Mater. 2014;6(5):990–9.

    Article  CAS  Google Scholar 

  • Garrett Q, Xu S, Simmons PA, Vehige J, Flanagan JL, et al. Expression and localization of carnitine/organic cation transporter OCTN1 and OCTN2 in ocular epithelium. Invest Ophthalmol Vis Sci. 2008;49:4844–9.

    Article  PubMed  Google Scholar 

  • Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3:275–87.

    Article  CAS  PubMed  Google Scholar 

  • Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48:2230–7.

    Article  PubMed  Google Scholar 

  • Gungor S, Delgado-Charro MB, Ruiz-Perez B, Schubert W, Isom P, Moslemy P, Patane MA, Guy RH. Trans-scleral iontophoretic delivery of low molecular weight therapeutics. J Control Release. 2010;147:225–31.

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Lee RL. Receptor-targeted gene delivery via folate-conjugated polyethylenimine. AAPS PharmSci. 1999;1:E19.

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Fisher KA, Darcy R, Cryan JF, O’Driscoll C. Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol Biosyst. 2010;6:1143–61.

    CAS  PubMed  Google Scholar 

  • Gupta AK, Madan S, Majumdar DK, Maitra A. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm. 2000;209:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br J Pharmacol. 2013;170:730–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38:627–34.

    CAS  PubMed  Google Scholar 

  • Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, Gan L. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin. 2010;31(8):990–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haritoglou C, Gerss J, Sauerland C, Kampik A, Ulbig MW, et al. Effect of calcium dobesilate on occurrence of diabetic macular oedema (CALDIRET study): randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2009;373:1364–71.

    Article  CAS  PubMed  Google Scholar 

  • Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2007;8(1):1.

    Article  PubMed  Google Scholar 

  • Hattori Y, Hashizume K, Nakajima K, Nishimura Y, Naka M, et al. The effect of long-term treatment with sulindac on the progression of diabetic retinopathy. Curr Med Res Opin. 2007;23:1913–7.

    Article  CAS  PubMed  Google Scholar 

  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins Introduction. Pflugers Arch. 2004;447:465–8.

    Article  CAS  PubMed  Google Scholar 

  • Hironaka K, Inokuchi Y, Tozuka Y, Shimazawa M, Hara H, Takeuchi H. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release. 2009;136(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  • Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78:260–77.

    Article  CAS  PubMed  Google Scholar 

  • Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine. 2012;8(5):776–83.

    Article  CAS  PubMed  Google Scholar 

  • Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005;60(2):207–25.

    Google Scholar 

  • Hosoya K, Lee VH, Kim KJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60:227–40.

    Article  CAS  PubMed  Google Scholar 

  • Hosoya K, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, et al. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther. 2009;329:87–93.

    Article  CAS  PubMed  Google Scholar 

  • Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci. 1983;72:1272–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang AJ, Tseng SC, Kenyon KR. Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci. 1989;30:684–9.

    CAS  PubMed  Google Scholar 

  • Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57:2010–32.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm. 2010;7(2):576–85.

    Article  CAS  PubMed  Google Scholar 

  • Ince I, Karasulu E, Ates H, Yavasoglu A, Kirilmaz L. A novel pilocarpine microemulsion as an ocular delivery system: in vitro and in vivo studies. J Clin Exp Ophthalmol. 2015;6:408.

    Google Scholar 

  • International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  Google Scholar 

  • Jaffe GJ, McCallum RM, Branchaud B, Skalak C, Butuner Z, Ashton P. Long-term follow-up results of a pilot trial of a fluocinolone acetonide implant to treat posterior uveitis. Ophthalmology. 2005;112(7):1192–8.

    Article  PubMed  Google Scholar 

  • Jain GK, Jain N, Pathan SA, Akhter S, Ahmad N, Jain N, Talegaonkar S. Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: influence of chitosan. Polym Degrad Stab. 2010a;95(12):2360–6.

    Article  CAS  Google Scholar 

  • Jain GK, Jain N, Pathan SA, Akhter S, Talegaonkar S, Chander P, Khar RK, Ahmad FJ. Ultra high-pressure liquid chromatographic assay of moxifloxacin in rabbit aqueous humor after topical instillation of moxifloxacin nanoparticles. J Pharm Biomed Anal. 2010b;52(1):110–3.

    Article  CAS  PubMed  Google Scholar 

  • Jain GK, Pathan SA, Akhter S, Jayabalan N, Talegaonkar S, Khar RK, Ahmad FJ. Microscopic and spectroscopic evaluation of novel PLGA-chitosan Nanoplexes as an ocular delivery system. Colloids Surf B Biointerfaces. 2011;82(2):397–403.

    Article  CAS  PubMed  Google Scholar 

  • Jain GK, Warsi MH, Nirmal J, Garg V, Pathan SA, Ahmad FJ, Khar RK. Therapeutic stratagems for vascular degenerative disorders of the posterior eye. Drug Discov Today. 2012;17(13–14):748–59.

    Article  CAS  PubMed  Google Scholar 

  • Jay WM, Shockley RK. Toxicity and pharmacokinetics of cefepime (BMY-28142) following intravitreal injection in pigmented rabbit eyes. J Ocul Pharmacol. 1988;4:345–9.

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038–43.

    Article  PubMed  Google Scholar 

  • Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev. 2008;60:1663–73.

    Article  CAS  PubMed  Google Scholar 

  • Juberías JR, Calonge M, Gómez S, López MI, Calvo P, Herreras JM, Alonso MJ. Efficacy of topical cyclosporine-loaded nanocapsules on keratoplasty rejection model in the rat. Curr Eye Res. 1998;17:39–46.

    Article  PubMed  Google Scholar 

  • Jwala J, Boddu SHS, Shah S, Sirimulla S, Pal D, Ashim K. Ocular sustained release nanoparticles containing stereoisomeric dipeptide prodrugs of acyclovir. J Ocul Pharmacol Ther. 2011;27(2):163–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser PK, Symons RC, Shah SM, Quinlan EJ, Tabandeh H, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol. 2010;150:33–9 e32.

    Article  CAS  PubMed  Google Scholar 

  • Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):151–65.

    Article  CAS  PubMed  Google Scholar 

  • Kang SJ, Durairaj C, Kompella UB, O’Brien JM, Grossniklaus HE. Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arc Ophthal. 2009;127(8):1043–7.

    Article  CAS  Google Scholar 

  • Kao HJ, Lin HR, Lo YL, Yu SP. Characterization of pilocarpine-loaded chitosan/carbopol nanoparticles. J Pharmacokinet Pharmacodyn. 2006;58:179–86.

    CAS  Google Scholar 

  • Katragadda S, Jain R, Kwatra D, Hariharan S, Mitra AK. Pharmacokinetics of amino acid ester prodrugs of acyclovir after oral administration: interaction with the transporters on Caco-2 cells. Int J Pharm. 2008;362(1–2):93–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kauper K, McGovern C, Sherman S, Heatherton P, Rapoza R, Stabila P, Dean B, Lee A, Borges S, Bouchard B, Tao W. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2012;53(12):7484–91.

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15:2654–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khar RK, Jain GK, Warsi MH, Mallick N, Akhter S, Pathan SA, Ahmad FJ. Nano-vectors for the ocular delivery of nucleic acid-based therapeutics. Indian J Pharm Sci. 2010;72:675–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SH, Galban CJ, Lutz RJ, Dedrick RL, Csaky KG, et al. Assessment of subconjunctival and intrascleral drug delivery to the posterior segment using dynamic contrast-enhanced magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2007;48:808–14.

    Article  PubMed  Google Scholar 

  • Klyce SD, Crosson CE. Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res. 1985;4:323–31.

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Numaga J, Yoshida A, Kaburaki T, Oshika T, Fujino Y, Wu GS, Rao NA, Kawashima H. Effects of a new dexamethasone-delivery system (Surodex) on experimental intraocular inflammation models. Graefes Arch Clin Exp Ophthalmol. 2003;241(11):927–33.

    Article  CAS  PubMed  Google Scholar 

  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–5.

    Article  CAS  PubMed  Google Scholar 

  • Kompella UB, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1(3):435–56.

    Google Scholar 

  • Koo H, Moon H, Han H, Na JH, Huh MS, Park JH, Woo SJ, Park KH, Kwon IC, Kim K, Kim H. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33:3485–93.

    Article  CAS  PubMed  Google Scholar 

  • Kuwano M, Ibuki H, Morikawa N, Ota A, Kawashima Y. Cyclosporine A formulation affects its ocular distribution in rabbits. Pharm Res. 2002;19:108–11.

    Article  CAS  PubMed  Google Scholar 

  • Lajunen T, Hisazumi K, Kanazawa T, Okada H, Seta Y, Yliperttula M, Urtti A, Takashima Y. Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur J Pharm Sci. 2014;62:23–32.

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi NM, Yalavarthi PR, Vadlamudi HC, Thanniru J, Yaga G, KH. Cubosomes as targeted drug delivery systems – a biopharmaceutical approach. Curr Drug Discov Technol. 2014;11(3):181–8.

    Google Scholar 

  • Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release. 2000;63(1–2):135–40.

    Article  CAS  PubMed  Google Scholar 

  • Lee VHL. Mechanisms and facilitation of corneal drug penetration. J Controlled Release. 1990;11:79–90.

    Article  CAS  Google Scholar 

  • Lee RJ, Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem. 1996;271:8481–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee VH, Robinson JR. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci. 1979;68:673–84.

    Article  CAS  PubMed  Google Scholar 

  • Lee VH, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2:67–108.

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–53.

    Article  CAS  PubMed  Google Scholar 

  • Lezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33(3):979–88.

    Article  CAS  Google Scholar 

  • Li VH, Wood RW, Kreuter J, Harmia T, Robinson JR. Ocular drug delivery of progesterone using nanoparticles. J Microencapsul. 1986;3:213–8.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm. 2009;379(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhuang CY, Wang M, Sui CG, Pan WS. Low molecular weight chitosan-coated liposomes for ocular drug delivery: in vitro and in vivo studies. Drug Deliv. 2012;19(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  • Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403(1–2):185–91.

    Article  CAS  PubMed  Google Scholar 

  • Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136–63.

    Article  CAS  PubMed  Google Scholar 

  • Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther. 2005;12(21):1544–50.

    Article  CAS  PubMed  Google Scholar 

  • Masuda I, Matsuo T, Yasuda T, Matsuo N. Gene transfer with liposomes to the intraocular tissues by different routes of administration. Invest Ophthalmol Vis Sci. 1996;37(9):1914–20.

    CAS  PubMed  Google Scholar 

  • Maurice DM, Mishima S. Ocular pharmacokinetics. In: Sears ML, editor. Pharmacology of the eye: handbook of experimental pharmacology. Berlin: Springer; 1984. p. 19–116.

    Chapter  Google Scholar 

  • Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm. 2010;36(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  • Mikkelson TJ, Chrai SS, Robinson JR. Altered bioavailability of drugs in the eye due to drug-protein interaction. J Pharm Sci. 1973;62:1648–53.

    Article  CAS  PubMed  Google Scholar 

  • Moghassemi S, Hadjizadeh AJ. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Control Release. 2014;10(185):22–36. doi:10.1016/j.jconrel.2014.04.015.

    Article  CAS  Google Scholar 

  • Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–315.

    Article  CAS  PubMed  Google Scholar 

  • Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterization. Eur J Pharm Biopharm. 2008;68:513–25.

    CAS  PubMed  Google Scholar 

  • Murugappan SK, Zhou Y. Transsclera drug delivery by pulsed High-Intensity Focused Ultrasound (HIFU): an ex vivo study. Curr Eye Res. 2014;7:1–9.

    Google Scholar 

  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79.

    Article  CAS  PubMed  Google Scholar 

  • Nagarsenker MS, Londhe VY, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190:63–71.

    Article  CAS  PubMed  Google Scholar 

  • Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  • Nicoli S, Ferrari G, Quarta M, Macaluso C, Santi P. In vitro transscleral iontophoresis of high molecular weight neutral compounds. Eur J Pharm Sci. 2009;36:486–92.

    Article  CAS  PubMed  Google Scholar 

  • Nirmal J, Velpandian T, Singh SB, Biswas NR, Azad R, et al. Evaluation of the functional importance of organic cation transporters on the ocular disposition of its intravitreally injected substrate in rabbits. Curr Eye Res. 2012;37:1127–35.

    Article  CAS  PubMed  Google Scholar 

  • Nirmal J, Singh SB, Biswas NR, Thavaraj V, Azad RV, et al. Potential pharmacokinetic role of organic cation transporters in modulating the transcorneal penetration of its substrates administered topically. Eye (Lond). 2013a;27:1196–203.

    Article  CAS  Google Scholar 

  • Nirmal J, Sirohiwal A, Singh SB, Biswas NR, Thavaraj V, et al. Role of organic cation transporters in the ocular disposition of its intravenously injected substrate in rabbits: implications for ocular drug therapy. Exp Eye Res. 2013b;116:27–35.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama N, Stapert HR, Zhang GD, et al. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconj Chem. 2003;14(1):58–66.

    Article  CAS  Google Scholar 

  • Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Del Rev. 2009;61(4):327–38.

    Article  CAS  Google Scholar 

  • Pan Q, Xu Q, Boylan NJ, Lamb NW, Emmert DG, Yang JC, Tang L, Heflin T, Alwadani S, Eberhart CG, Stark WJ, Hanes J. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release. 2015;201:32–40.

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Trivedi S, Luo S, Zhu X, Pal D, Kern ER, Mitra AK. Synthesis, physicochemical properties and antiviral activities of ester prodrugs of ganciclovir. Int J Pharm. 2005;305:75–89.

    Article  CAS  PubMed  Google Scholar 

  • Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patel SP, Vaishya R, Yang X, Pal D, Mitra AK. Novel thermosensitive pentablock copolymers for sustained delivery of proteins in the treatment of posterior segment diseases. Protein Pept Lett. 2014;21(11):1185–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pepić I, Jalsenjak N, Jalsenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm. 2004;272:57–64.

    Article  PubMed  CAS  Google Scholar 

  • Pepić I, Hafner A, Lovrić J, Pirkić B, Filipović-Grcić J. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci. 2010;99(10):4317–25.

    Article  PubMed  CAS  Google Scholar 

  • Perumal OP, Inapagolla R, Kannan S, Kannan RM. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials. 2008;29(24–25):3469–76.

    Article  CAS  PubMed  Google Scholar 

  • Phan CM, Subbaraman L, Liu S, Gu F, Jones L. In vitro uptake and release of natamycin Dex-b-PLA nanoparticles from model contact lens materials. J Biomater Sci Polym Ed. 2014;25(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20:576–83.

    Article  PubMed  Google Scholar 

  • Puglia C, Offerta A, Carbone C, Bonina F, Pignatello R, Puglisi G. Lipid Nanocarriers (LNC) and their applications in ocular drug delivery. Curr Med Chem. 2015;22(13):1589–602.

    Article  CAS  PubMed  Google Scholar 

  • Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res. 2010;35:1081–9.

    Article  CAS  PubMed  Google Scholar 

  • Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–81.

    Article  CAS  PubMed  Google Scholar 

  • Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015. doi:10.1016/j.ejpb.2015.02.019.

    Google Scholar 

  • Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine. 2009;5:8–20.

    Article  CAS  PubMed  Google Scholar 

  • Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30:296–323.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16:85–146.

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer H, Krohn D. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci. 1982;22:220–7.

    CAS  PubMed  Google Scholar 

  • Schlessinger A, Khuri N, Giacomini KM, Sali A. Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr Top Med Chem. 2013;13:843–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senthilkumari S, Velpandian T, Biswas NR, Bhatnagar A, Mittal G, et al. Evidencing the modulation of P-glycoprotein at blood-ocular barriers using gamma scintigraphy. Curr Eye Res. 2009;34:73–7.

    Article  CAS  PubMed  Google Scholar 

  • Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotech. 2004;22(8):977–84.

    Article  CAS  Google Scholar 

  • Shen J, Deng Y, Jin X, Ping Q, Su Z, Li L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: improving in vivo ocular distribution. Int J Pharm. 2010;402(1–2):248–53.

    Article  CAS  PubMed  Google Scholar 

  • Sieg JW, Robinson JR. Mechanistic studies on transcorneal permeation of pilocarpine. J Pharm Sci. 1976;65:1816–22.

    Article  CAS  PubMed  Google Scholar 

  • Simon AM, Goodenough DA. Diverse functions of vertebrate gap junctions. Trends Cell Biol. 1998;8:477–83.

    Article  CAS  PubMed  Google Scholar 

  • Song HB, Lee KJ, Seo IH, Lee JY, Lee SM, Kim JH, Kim JH, Ryu W. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery. J Control Release. 2015;209:272–9.

    Article  CAS  PubMed  Google Scholar 

  • Spataro GG, Malecaze F, Turrin C-O. Designing dendrimers for ocular drug delivery. Eur J Med Chem. 2010;45(1):326–34.

    Article  CAS  PubMed  Google Scholar 

  • Stratford RE, Yang DC, Redell MA, Lee VHL. Effects of topically applied liposomes on disposition of epinephrine and inulin in the albino rabbit eye. Int J Pharm. 1983;13:263–72.

    Article  CAS  Google Scholar 

  • Suen WL, Chau Y. Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release. 2013;167(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  • Suen WL, Wong HS, Yu Y, Lau LC, Lo AC, Chau Y. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo. Invest Ophthalmol Vis Sci. 2013;54(6):4358–65.

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 2000;89:1371–88.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30:343–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tao W. Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther. 2006;6(7):717–26.

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, et al. Strategies for ocular siRNA delivery: potential and limitations of non-viral nanocarriers. J Biol Eng. 2012;6:7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci. 2015;2(1–2):1–13.

    Google Scholar 

  • Totan Y, Güler E, GüraÄŸaç FB. Dexamethasone intravitreal implant for chronic diabetic macular edema resistant to intravitreal bevacizumab treatment. Curr Eye Res. 2015;22:1–7.

    Article  CAS  Google Scholar 

  • Ueda H, Horibe Y, Kim KJ, Lee VH. Functional characterization of organic cation drug transport in the pigmented rabbit conjunctiva. Invest Ophthalmol Vis Sci. 2000;41:870–6.

    CAS  PubMed  Google Scholar 

  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58:1131–5.

    Article  CAS  PubMed  Google Scholar 

  • Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37:435–56.

    Article  CAS  PubMed  Google Scholar 

  • Urtti A, Pipkin JD, Rork GS, Sendo T, Finne U, et al. Controlled drug delivery devices for experimental ocular studies with timolol. 2. Ocular and systemic absorption in rabbits. Int J Pharm. 1990;61:241–9.

    Article  CAS  Google Scholar 

  • Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK. Role of membrane transporters and metabolizing enzymes in ocular drug delivery. Curr Drug Metab. 2014;15:680–93.

    Article  CAS  PubMed  Google Scholar 

  • Vadlapudi AD, Vadlapatla RK, Kwatra D, Earla R, Samanta SK, Pal D, Mitra AK. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm. 2012;434(1–2):315–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vadlapudi AD, Cholkar K, Vadlapatla RK, Mitra AK. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: formulation development and ocular biocompatibility. J Ocul Pharmacol Ther. 2014;30(1):49–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.

    Article  CAS  PubMed  Google Scholar 

  • Vega E, Egea MA, Valls O, Espina M, García ML. Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci. 2006;95:2393–405.

    Article  CAS  PubMed  Google Scholar 

  • Velagaleti PR, Anglade E, Khan JI, Gilger BC, Mitra AK. Topical delivery of hydrophobic drugs using a novel mixed nanomicellar technology to treat diseases of the anterior & posterior segments of the eye. Drug Delivery Technol. 2010;10:42–7.

    CAS  Google Scholar 

  • Velpandian T. Intraocular penetration of antimicrobial agents in ophthalmic infections and drug delivery strategies. Expert Opin Drug Deliv. 2009;6:255–70.

    Article  CAS  PubMed  Google Scholar 

  • Velpandian T. Closed gateways–can neuroprotectants shield the retina in glaucoma? Drugs R D. 2010;10:93–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Velpandian T, Gupta SK, Gupta YK, Biswas NR, Agarwal HC. Ocular drug targeting by liposomes and their corneal interactions. J Microencapsul. 1999;16(2):243–50.

    Google Scholar 

  • Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces. 2014;1(122):423–31.

    Article  CAS  Google Scholar 

  • Widjaja LK, Bora M, Chan PN, Lipik V, Wong TT, Venkatraman SS. Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications. J Biomed Mater Res A. 2014;102(9):3056–65.

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Chen W, Huang L. Mechanism of adjuvant activity of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol Immunol. 2007;44(15):3672–81.

    Article  CAS  PubMed  Google Scholar 

  • Yao WJ, Sun KX, Mu HJ, et al. Preparation and characterization of puerarin dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm. 2010;36(9):1027–35.

    Article  CAS  PubMed  Google Scholar 

  • Yavuz B, Pehlivan SB, Unlü N. Dendrimeric systems and their applications in ocular drug delivery. Scientific World Journal. 2013;2013:1–13. Article ID 732340. http://dx.doi.org/10.1155/2013/732340.

    Google Scholar 

  • Young B, Heath JW. Wheater’s functional histology. Edinburgh: Churchill Livingstone; 2000.

    Google Scholar 

  • Zhang N, Kannan R, Okamoto CT, Ryan SJ, Lee VH, et al. Characterization of brimonidine transport in retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2006;47:287–94.

    Article  PubMed  Google Scholar 

  • Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, et al. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 2008;36:1300–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu W, Wu S, Jin J, Li W, et al. Calcium dobesilate for diabetic retinopathy: a systematic review and meta-analysis. Sci China Life Sci. 2015;58:101–7.

    Article  CAS  PubMed  Google Scholar 

  • Zuhorn IS, Kalicharan R, Hoekstra D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J Biol Chem. 2002;277:18021–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayabalan Nirmal PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nirmal, J., Jain, G.K. (2016). Drug Delivery Systems for Ocular Use. In: Velpandian, T. (eds) Pharmacology of Ocular Therapeutics. Adis, Cham. https://doi.org/10.1007/978-3-319-25498-2_19

Download citation

Publish with us

Policies and ethics