Skip to main content

Abstract

Integrated Water Resources Management often needs specific climate data, e.g. for water use assessment in agriculture or reservoir design for drinking water supply and flood retention. Needed data are often missing. Climate Change aggravates this problem, as in contrast to the past, measured data only are probably insufficient to be used in IWRM studies for future impact. A scheme is presented to replace measured data by climate model output. Model performance assessment is done for General Circulation Models (GCMs) with the example regions of Eastern Europe (Western Bug catchment), the Arabian Peninsula and the region of Brasília (Brazil). The ranking of GCMs was sensitive to region, performance measure and reference data. However, HADCM3 (Hadley Centre) and MPEH5 (MPI Hamburg) show a good resemblance with two differing references for two out of three regions. Regional downscaling is demonstrated with two examples: dynamical with the mesoscale CCLM for the Western Bug, statistical with the SDSM for Brasília. Both approaches differ in observational data requirements (lower for dynamical downscaling) and need for bias correction (more for dynamical downscaling). Impact modelling based on climate model output shows significant changes in SWAT simulations of runoff in the Western Bug catchment for the B1 and A2 scenarios at the end of the 21st century. Climate change is an IWRM relevant problem in all three regions, increasing evaporation of irrigated agriculture in the Middle East, changing soil erosion into drinking water reservoirs in central Brazil or the Bug runoff. Which climate information is adequate depends on many factors, primarily the specific IWRM problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ERA40—Reanalysis data set of the European Centre for Medium-Range Weather Forecasts (ECMWF).

  2. 2.

    NCEP—Reanalysis data set of the National Centers for Environmental Prediction (USA).

  3. 3.

    GPCP—Global Precipitation Climatology Project, the GPCP combined precipitation data were developed and computed by the NASA/Goddard Space Flight Center’s Laboratory for Atmospheres as a contribution to the GEWEX Global Precipitation Climatology Project.

  4. 4.

    CMAP—Climate Prediction Center (CPC) Merged Analysis of Precipitation.

References

  • Adler RF, Huffman GJ, Chang ATC et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

    Article  Google Scholar 

  • Alexandersson H (1986) A homogeneity test to precipitation data. Int J Climatol 6:661–675

    Article  Google Scholar 

  • AlSarmi SH, Washington R (2011) Recent observed climate change over the Arabian Peninsula. J Geophys Res. doi:10.1029/2010JD015459

    Google Scholar 

  • AlSarmi SH, Washington R (2013) Changes in climate extremes in the Arabian Peninsula: analysis of daily data. Int J Climatol. doi:10.1002/joc.3772

    Google Scholar 

  • Anders I, Stagl J, Auer I, Pavlik D (2014) Climate Change in Central and Eastern Europe. In: Rannow S, Neubert M (eds) Managing protected areas in central and Eastern Europe Under climate change. Springer, Berlin, pp 17–30

    Chapter  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah R, Williams J (1998) Large area hydrologic modeling and assessment. Part I: model development. J Am Water Resour Assoc 34:73–89

    Article  CAS  Google Scholar 

  • Barfus K, Bernhofer C (2014a) Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Advance online publication, Environ Earth Sci. doi:10.1007/s12665-014-3147-3

    Google Scholar 

  • Barfus K, Bernhofer C (2014b) Assessment of GCM capabilities to simulate tropospheric stability on the Arabian Peninsula. Int J Climatol. doi:10.1002/joc.4092

    Google Scholar 

  • BCCR (2005) IPCC DDC AR4 BCCR-BCM2.0 20C3 M run1, SRESA2 run1, SRESB1 run1. World Data Center for Climate. CERA database. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_20C3M_1, BCCR_BCM2.0_SRESA2_1, BCCR_BCM2.0_SRESB1_1

  • BCCR (2006) IPCC DDC AR4 BCCR_BCM2.0 SRESA1B run1. World Data Center for Climate. CERA database. http://cerawww.dkrz.de/WDCC/ui/Compact.jsp?acronym=BCCR_BCM2.0_SRESA1B_1

  • Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-Statistical Downscaling, World Scientific Publishers

    Google Scholar 

  • Bernhofer C, Goldberg V, Franke J, Häntzschel J, Harmansa S, Pluntke T, Geidel K, Surke M, Prasse H, Freydank E, Hänsel S, Mellentin U, Küchler W (2008) Sachsen im Klimawandel, Eine Analyse. Sächsisches Staatsministerium für Umwelt und Landwirtschaft (Hrsg.), Dresden, p 211

    Google Scholar 

  • Bernhofer C, Matschullat J, Bobeth A (eds) (2011) Klimaprojektionen für die REGKLAM Modellregion Dresden. Publikationsreihe des BMBF-geförderten Projektes REGKLAM—regionales Klimaanpassungsprogramm für die Modellregion Dresden, vol 2, p 112

    Google Scholar 

  • Borges PA, Franke J, Silva FDS, Weiss H, Bernhofer C (2014a) Differences between two climatological periods (2001–2010 vs. 1971–2000) and trend analysis of temperature and precipitation in Central Brazil. Theor Appl Climatol 116:191–202. doi:10.1007/s00704-013-0947-4

    Article  Google Scholar 

  • Borges PA, Franke J, Tanaka M, Weiss H, Bernhofer C (2014b) Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor Appl Climatol (subm.)

    Google Scholar 

  • Bracegirdle TJ, Stephenson DB (2012) Higher precision estimates of regional polar warming by ensemble regression of climate model projections. Clim Dyn 39(12):2805–2821. doi:10.1007/s00382-012-1330-3

    Article  Google Scholar 

  • Brown JR, Colman RA, Moise AF et al (2013) The western Pacific monsoon in CMIP5 models: Model evaluation and projections. J Geophys Res Atmos 118(22):12458–12475. doi:10.1002/2013JD020290

    Article  Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58(1–2):11–27. doi:10.1016/0022-1694(82)90066-X

    Article  Google Scholar 

  • Casanueva A, Herrera S, Fernandez J et al (2013) Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods. Nat Hazards Earth Syst Sci 13(8):2089–2099. doi:10.5194/nhess-13-2089-2013

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2012) Coupling statistical and dynamical methods for spatial downscaling of precipitation. Clim Change 114(3–4):509–526. doi:10.1007/s10584-012-0452-2

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007a) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magan˜a Rueda V, Mearns L, Mene´ndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007b) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, London, pp 848–940

    Google Scholar 

  • Christensen JH, Boberg F, Christensen OB et al (2008) On the need for bias correction of re-gional climate change projections of temperature and precipitation. Geophys Res Lett. doi:10.1029/2008GL035694

    Google Scholar 

  • Craddock JM (1956) The representation of the annual temperature variation over central and northern Europe by a two-term harmonic form. Q J Roy Meteor Soc 82:275–288. doi:10.1002/qj.49708235304

    Article  Google Scholar 

  • Dahmen ER, Hall MJ (1990) Screening of hydrological data: tests for stationarity and relative consistency. Publication No. 49, International Institute for Land Reclamation and Improvement (ILRI), Wageningen

    Google Scholar 

  • Daron JD, Sutherland K, Jack C, Hewitson BC (2014) The role of regional climate projections in managing complex socio-ecological systems. Reg Environ Change. doi:10.1007/s10113-014-0631-y

    Google Scholar 

  • Deser C, Knutti R, Solomon S et al (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2(11):775–779. doi:10.1038/NCLIMATE1562

    Article  Google Scholar 

  • Dessai S, Hulme M, Lempert R, Pielke R Jr (2009) Do we need better predictions to adapt to a changing climate? EOS Trans AGU 90(13):111–112. doi:10.1029/2009EO130003

    Article  Google Scholar 

  • Donat MG, Peterson TC, Brune M et al (2013) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol. doi:10.1002/joc.3707

    Google Scholar 

  • DVWK-Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblatt 238/1996, Bonn

    Google Scholar 

  • EEA (2012) Climate change, impacts and vulnerability in Europe 2012—an indicator-based report. In: EEA Report No. 12. Kopenhagen, Denmark, 302p

    Google Scholar 

  • Ehret U, Zehe E, Wulfmeyer V et al (2012) Should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci 16(9):3391–3404. doi:10.5194/hess-16-3391-2012

    Article  Google Scholar 

  • Emori S (2005) IPCC DDC AR4 CCSR-MIROC3.2_(hi-res) 20C3M run1, SRESA1B run1, SRESB1 run1. World Data Center for Climate. CERA database. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=MIROC3.2_hr_20C3M_1, MIROC3.2_hr_SRESA1B_1, MIROC3.2_hr_SRESB1_1

  • Ertel A-M, Lupo A, Scheifhacken N, Bodnarchuk T, Manturova O, Berendonk TU, Petzoldt T (2012) Heavy load and high potential: anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci 65:1459–1473

    Article  CAS  Google Scholar 

  • European Union (2006) Management of the Bug, Latoritza and Uzh River Basins Ukraine, Report on Project Component 3 Upper Tisza/ Western Bug, Challenges and management requirements, EuropeAid/114957/C/SV/UA

    Google Scholar 

  • Flaounas E, Drobinski P, Vrac M et al (2013) Precipitation and temperature space-time variability and extremes in the Mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn 40(11–12):2687–2705. doi:10.1007/s00382-012-1558-y

    Article  Google Scholar 

  • Fischer S, Pluntke T, Pavlik D et al (2014) Hydrologic effects of climate change in a sub-basin of the Western Bug River, Western Ukraine. Environ Earth Sci. doi:10.1007/s12665-014-3256-z

    Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • GDF (2012) Plano de Gerenciamento Integrado de Recursos Hídricos do Distrito Federal—PGIRH/DF: Volume 2—Prognóstico e programas de ação. Adasa, Governo do Distrito Federal—GDF, Brasília

    Google Scholar 

  • GFDL (2005) IPCC DDC AR4 GFDL-CM2.1 20C3M run1, SRESA1B run1, SRESA2 run1, SRESB1 run1. World data center for climate. CERA database. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=GFDL_CM2.1_20C3M_1, GFDL_CM2.1_SRESA1B_1, GFDL_CM2.1_SRESA2_1, GFDL_CM2.1_SRESB1_1

  • Giorgi F, Mearns LO (2002) Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes for AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method. J Climate 15:1141–1158. doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2

    Google Scholar 

  • Girogi F, Jones C, Asrar GR (2009) Adressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res. doi:10.1029/2007JD008972

    Google Scholar 

  • Goodess C (2005) STARDEX–Downscaling climate extremes. UEA, Norwich

    Google Scholar 

  • Grimm AM, Natori AA (2006) Climate change and interannual variability of precipitation in South America. Geophys Res Lett 33:L19706. doi:10.1029/2006GL026821

    Article  Google Scholar 

  • Grundmann J, Schütze N, Schmitz GH et al (2012) Towards an integrated arid zone water management using simulation-based optimisation. Environ Earth Sci 65(5):1381–1394. doi:10.1007/s12665-011-1253-z

    Article  Google Scholar 

  • Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19:240–247. doi:10.1016/j.gloenvcha.2008.12.003

    Article  Google Scholar 

  • Hattermann FF, Post J, Krysanova V et al (2008) Assessment of Water Availability in a Central-European River Basin (Elbe) Under Climate Change. Adv Clim Change Res 4:42–50

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Herzog J, Müller-Westermeier G (1998) Homogenitätsprüfung und Homogenisierung klimatologischer Messreihen im Deutschen Wetterdienst. Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-Based Predictions of Climate Changes and Their Impacts. Eos 85:566–567

    Article  Google Scholar 

  • Kalbus E, Kalbacher T, Kolditz O et al (2012) Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Google Scholar 

  • Karpechko AY, Maraun D, Eyring V (2013) Improving antarctic total ozone projections by a process-oriented multiple diagnostic ensemble regression. J Atmos Sci 70(12):3959–3976. doi:10.1175/JAS-D-13-071.1

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C et al (2010) Challenges in combining projections from multiple climate models. J Climate 23(10):2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Kwarteng AY, Dorvlo AS, Kumar GTV (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int J Climatol 29:605–617. doi:10.1002/joc.1727

    Article  Google Scholar 

  • Lorz C, Abbt-Braun G, Bakker F, Borges P, Börnick H, Fortes L, Frimmel F, Gaffron A, Hebben N, Höfer R, Makeschin F, Neder K, Roig HL, Steiniger B, Strauch M, Walde DH, Weiß H, Worch E, Wummel J (2012) Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil: climate, land-use and water resources. Environ Earth Sci 65(5):1363–1366. doi:10.1007/s12665-011-1219-1

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM et al (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys. doi:10.1029/2009RG000314

  • Maraun D (2012) Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys Res Lett 39:L06706. doi:10.1029/2012GL051210

    Article  Google Scholar 

  • Maraun D (2013) When will trends in European mean and heavy daily precipitation emerge? Environ Res Lett 8(1):014004. doi:10.1088/1748-9326/8/1/014004

    Article  Google Scholar 

  • Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S, Biner S, Caya D, Arritt RW, Gutowski W, Takle E, Snyder M, Jones RG, Nunes AMB, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the North American regional climate change assessment programme (NARCCAP). Clim Change 120:965–975

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE et al (2007) The WRCP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Mehrotra R, Evans JP, Sharma A et al (2014) Evaluation of downscaled daily rainfall hindcasts over Sydney, Australia using statistical and dynamical downscaling approaches. Hydrol Res 45(2):226–249. doi:10.2166/nh.2013.094

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D et al (2001) Impact of climate change on hydrological regimes and water resources management in the rhine basin. Clim Change 49:105–128. doi:10.1023/A:1010784727448

    Article  CAS  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Article  CAS  PubMed  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G et al (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change (No. PNNL-SA-39650). Pacific Northwest National Laboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US)

    Google Scholar 

  • Nasrallah HA, Balling RC Jr (1996) analysis of recent climate changes in the Arabian Peninsula Region. Theor Appl Climatol 53:245–252

    Article  Google Scholar 

  • Neelin JD (2010) Climate change and climate modeling. Cambridge University Press, Cambridge, 298 p

    Google Scholar 

  • Olesen JE, Carter TR, Díaz-Ambrona CH et al (2007) Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim Change 81:123–143. doi:10.1007/s10584-006-9216-1

    Article  Google Scholar 

  • Pavlik D, Söhl D, Pluntke T et al (2012) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci 65:1475–1482. doi:10.1007/s12665-011-1081-1

    Article  Google Scholar 

  • Pavlik D, Söhl D, Pluntke T et al (2014) Climate change in the Western Bug river basin and the impact on future hydro-climatic conditions. Environ Earth Sci. doi:10.1007/s12665-014-3068-1

    Google Scholar 

  • Peng PT, Kumar A, van den Dool, H et al (2002) An analysis of multimodel ensemble predictions for seasonal climate anomalies. J Geophys Res-Atmos 107. doi:10.1029/2002JD002712

    Google Scholar 

  • Penman HL (1948) Natural Evaporation from Open Water, Bare Soil and Grass. Proc R Soc Lond Ser Math Phys Sci 193:120–145

    Article  CAS  Google Scholar 

  • Pennell C, Reichler T (2011) On the effective number of climate models. J Climate 24(9):2358–2367

    Article  Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Clim 99:187–192

    Article  Google Scholar 

  • Pierce DW, Das T, Cayan DR et al (2013) Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Clim Dynam 40(3–4):839–856. doi:10.1007/s00382-012-1337-9

    Article  Google Scholar 

  • Pluntke T, Pavlik D, Bernhofer C (2014) Reducing uncertainty of hydrological modelling in a data sparse region. Environ Earth Sci. doi:10.1007/s12665-014-3252-3

    Google Scholar 

  • Reclamation (2008) Sensitivity of future CVP/SWP operations to potential climate change and associated sea level rise. In: Appendix R in biological assessment on the continued long-term operations of the central valley project and the state water project. Bureau of Reclamation U.S. Department of the Interior. http://www.usbr.gov/mp/cvo/ocap/sep08_docs/Appendix_R.pdf

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311. doi:10.1175/BAMS-89-3-303

    Article  Google Scholar 

  • Remesan R, Bellerby T, Frostik L (2014) Hydrological modelling using data from monthly GCMs in a regional catchment. Hydrol Process 28:3241–3263. doi:10.1002/hyp.9872

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L et al (2003) The atmospheric general circulation model ECHAM5. MPI-Report No. 127, Hamburg

    Google Scholar 

  • Roehrig R, Bouniol D, Guichard F et al (2013) The present and future of the West African Monsoon: a process-oriented assessment of CMIP5 Simulations along the AMMA Transect. J Climate 26(17):6471–6505. doi:10.1175/JCLI-D-12-00505.1

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.8

    Article  Google Scholar 

  • Salas D (2005) IPCC DDC AR4 CNRM-CM3 20C3M run1, SRESA1B run1, SRESA2 run1, SRESB1 run1. World Data Center for Climate. CERA database. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=CNRM_CM3_20C3M_1, CNRM_CM3_SRESA1B_1, CNRM_CM3_SRESA2_1, CNRM_CM3_SRESB1_1

  • Sauter T, Venema V (2011) Natural three-dimensional predictor domains for statistical precipitation downscaling. J Clim 24(23):6132–6145. doi:10.1175/2011JCLI4155.1

    Article  Google Scholar 

  • Schönwiese CD, Janoschitz R (2008) Klima-Trendatlas Europa 1901–2000. Frankfurt Main: Berichte des Instituts für Atmosphäre und Umwelt der Universität Frankfurt

    Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW et al (2013) Climate extremes indices in the CMIP5 multi-model ensemble. Part 2: future projections. J Geophys Res. doi:10.1002/jgrd.50188

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans Roy Soc A 365(1857):2053–2075

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Leuprecht A (2010) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol. doi:10.1002/joc.2168

    Google Scholar 

  • Trenberth K (1993) Climate System Modeling. Cambridge University Press, 818 p

    Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J Roy Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Venema VKC, Mestre O, Aguilar E et al (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8(1):89–115. doi:10.5194/cp-8-89-2012

    Article  Google Scholar 

  • Wang X, Huang G, Lin Q et al (2014) High-resolution temperature and precipitation projections over Ontario, Canada: a coupled dynamical-statistical approach. Q J Roy Meteor Soc. doi:10.1002/qj.2421

    Google Scholar 

  • Wendling U, Müller J, Schwede K (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Z Meteorologie 41:468–475

    Google Scholar 

  • Whetton P, Hennessy K, Clarke J et al (2012) Use of Representative Climate Futures in impact and adaptation assessment. Clim Change 115(3–4):433–442. doi:10.1007/s10584-012-0471-z

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17(2):145–157. doi:10.1016/S1364-8152(01)00060-3

    Article  Google Scholar 

  • Wilby RL, Charles SP, Zorita E et al (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. In: Supporting material of the intergovernmental panel on climate change. Available from the DDC of IPCC TGCIA, 27 pp

    Google Scholar 

  • Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65:180–185. doi:10.1002/wea.543

    Article  Google Scholar 

  • Wilby RL, Dawson CW (2012) The statistical downscaling model: insights from one decade of application. Int J Climatol 33(7):1707–1719. doi:10.1002/joc.3544

    Article  Google Scholar 

  • Winkler JA, Palutikof JP, Andresen JA, Goodess CM (1997) The simulation of daily temperature series from GCM output. Part II: sensitivity analysis of an empirical transfer function methodology. J Clim 10:2514–2532. doi:10.1175/1520-0442(1997)010<2514:TSODTT>2.0.CO;2

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

    Article  Google Scholar 

  • Yu Y (2005) IPCC DDC AR4 FGOALS-g1.0 20C3 M run1, SRESA1B run1, SRESB1 run1. World data center for climate. CERA database. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=FGOALS_g1.0_20C3M_1, FGOALS_g1.0_SRESA1B_1, FGOALS_g1.0_SRESB1_1

  • Yu Y (2007) IPCC DDC AR4 FGOALS-g1.0 20C3M run2, run3, SRESA1B run2, run3, World data center for climate. CERA database. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=FGOALS_g1.0_20C3M_2, FGOALS_g1.0_20C3M_3, FGOALS_g1.0_SRESA1B_2, FGOALS_g1.0_SRESA1B_3, FGOALS_g1.0_SRESB1_2, FGOALS_g1.0_SRESB1_3

Download references

Acknowledgments

This work was supported by main funding from the Federal Ministry for Education and Research (BMBF) in the framework of the project “IWASInternational Water Research Alliance Saxony” (grant 02WM1028) and partially, by the BMBF IPSWaT Programme (IPS10/15P) and by the Helmholtz Association within HIGRADE. The authors would like to thank the Centre for Information Services and High Performance Computing in Dresden (ZIH) for providing the high performance computer resources and for support, the German High Performance Computing Centre for Climate- and Earth System Research (DKRZ) for providing the ERA40 and ECHAM5 data sets and the CLM-Community for providing access to and support for the CCLM as well as for scientific discussions and valuable advice. A special thanks to all colleagues and partners of the project IWAS for successful cooperation and support. Furthermore we thank the two anonymous reviewers for helpful comments improving this document considerably.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Bernhofer or Klemens Barfus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bernhofer, C., Barfus, K., Pavlik, D., Borges, P., Söhl, D. (2016). Climate Change Information for IWRM. In: Borchardt, D., Bogardi, J., Ibisch, R. (eds) Integrated Water Resources Management: Concept, Research and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-25071-7_8

Download citation

Publish with us

Policies and ethics