Skip to main content

The Cell Cycle of Microalgae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Growth and division of microalgae are indispensable for their survival and spread throughout the environment. Microalgae divide by two mechanisms: binary and multiple fission. Binary fission is the division into two daughter cells, as seen in the majority of eukaryotic organisms; it also represents a transition to multiple fission. Multiple fission, typical for some green algae, leads to division into more than two daughter cells (from 4 to 1024), in principle, 2n. Here, we describe the different organizational types of multiple fission cell cycles, with distinct timing of DNA replication, nuclear, and cellular divisions, and discuss how they are regulated at physiological and molecular levels. We show in detail how different growth conditions, particularly changes in light and temperature, will affect not only growth and the accumulation of macromolecules (RNA, protein, starch) but also, through unknown coordination mechanisms, how the cells perform multiple fission cell cycles to generate the number of daughter cells. Finally, we discuss the relationship between two major algal compartments: the nucleocytoplasmic and chloroplastic compartments. Growth and division of the two are intricately intertwined and possibly co-regulated by mechanisms that are not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

    Concerning this chapter, genus Scenedesmus was re-assessed giving rise to two genera: Scenedesmus and Desmodesmus (An et al., 1999). Species formerly known as Scenedesmus quadricauda was re-classified as Desmodesmus quadricauda. The species has been for many years used as an important model organisms and has been referred mostly as Scenedesmus quadricauda. For the sake of clarity, the text referring to such publications states the current genus name Desmodesmus with the former name Scenedesmus in parentheses.

Abbreviations

CDK:

cyclin-dependent kinase

chl-RNA:

chloroplast ribosomal RNA

cyt-RNA:

cytosolic ribosomal RNA

CKI:

inhibitor of cyclin-dependent kinase

CP:

commitment point

DP:

dimerization partner

E2F:

transcription factor

FdUrd:

5-fluorodeoxyuridin, inhibitor of thymidylate synthase

NAL:

nalidixic acid, an inhibitor of DNA gyrase, (1-ethy1-1,4-dihydro-7-methy1-4-oxo-1,8-naphtyridine-3-carboxylic acid)

nuc-DNA:

nuclear DNA

pt-DNA:

chloroplast (plastid) DNA

Rb:

retinoblastoma protein

References

  • Abrahams S, Cavet G, Oakenfull EA, Carmichael JP, Shah ZH, Soni R, Murray JAH (2001) A novel and highly divergent Arabidopsis cyclin isolated by complementation in budding yeast. Biochim Biophys Acta 1539:1–6

    Article  CAS  PubMed  Google Scholar 

  • Adam G, Steiner U, Seuwen K (1983) Proliferative activity and ribosomal RNA content of 3T3 and SV 40-3T3 cells. Cell Biol Int Rep 7:955–962

    Article  CAS  PubMed  Google Scholar 

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593

    Article  CAS  Google Scholar 

  • An SS, Friedl T, Hegewald E (1999) Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2rDNA sequence comparisons. Plant Biol 1:418–428

    Google Scholar 

  • Alberghina L, Sturani E (1981) Control of growth and of the nuclear division cycle in Neurospora crassa. Microbiol Rev 45:99–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Krager N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Badour SS, Tan CK, Waygood ER (1977) Observation on cell development in Chlamydomonas segni (Chlorophyceae) at low and high carbon dioxide tension. J Phycol 13:80–86

    CAS  Google Scholar 

  • Ballin G, Doucha J, Zachleder V, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of nitrogen starvation. Biol Plant 30:81–91

    Article  CAS  Google Scholar 

  • Baserga R (1990) The cell cycle – myths and realities. Cancer Res 50:6769–6771

    CAS  PubMed  Google Scholar 

  • Baserga R, Estensen RD, Petersen RO (1965) Inhibition of DNA synthesis in Ehrlich ascites cells by actinomycin D. II. The presynthetic block in the cell cycle. Proc Natl Acad Sci U S A 54:1141–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beach D, Durkacz B, Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300:706–709

    Article  CAS  PubMed  Google Scholar 

  • Bedard DP, Singer RA, Johnston GL (1980) Transient cell cycle arrest of Saccharomyces cerevisiae by amino acid analog 2-DL-thienylamine. J Bacteriol 141:100–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bišová K, Vítová M, Zachleder V (2000) The activity of total histone H1 kinases is related to growth and commitment points while the p13(suc1)-bound kinase activity relates to mitoses in the alga Scenedesmus quadricauda. Plant Physiol Biochem 38:755–764

    Article  Google Scholar 

  • Bišová K, Zachleder V (2014) Cell-cycle regulation in green algae dividing by multiple fission. J Exp Bot 65:2585–2602

    Article  PubMed  CAS  Google Scholar 

  • Bisova K, Krylov DM, Umen JG (2005) Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol 137:1–17

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Boudolf V, Vlieghe K, Beemster GTS, Magyar Z, Acosta JAT, Maes S, Schueren E, Inze D, Veyldera L (2004) The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16:2683–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudolf V, Inze D, De Veylder L (2006) What if higher plants lack a CDC25 phosphatase? Trends Plant Sci 11:474–479

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cepák V, Zachleder V (1988) Regulation of chloroplast and cytoplasmic rRNA accumulation by light energy and its relation to reproductive events during the cell cycle of the alga Scenedesmus quadricauda. Plant Sci 57:205–213

    Article  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    Article  CAS  Google Scholar 

  • Chiang KS (1971) Replication, transmission and recombination of cytoplasmic DNAs in C. reinhardi. In: Boardmann NK, Linnane AW, Smillie RM (eds) Autonomy and biogenesis of mitochondria and chloroplasts. North Holland Publishing Company, Amsterdam, pp 235–249

    Google Scholar 

  • Chiang KS (1975) The nuclear and chloroplast DNA replication mechanisms in Chlamydomonas reinhardtii: their regulation, periodicity and interaction. In: Colloque Internationale. CNRS, Paris, pp 147–158

    Google Scholar 

  • Chiang KS, Sueoka N (1967a) Replication of chromosomal and cytoplasmic DNA during mitosis and meiosis in the eucaryote Chlamydomonas reinhardi. J Cell Physiol 70:89–112

    Article  CAS  PubMed  Google Scholar 

  • Chiang KS, Sueoka N (1967b) Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation. Biochemistry 57:1506–1513

    CAS  Google Scholar 

  • Coleman AW, Maguire MJ (1982) A microspectrophotometric analysis of nuclear and chloroplast DNA in Volvox. Dev Biol 94:441–450

    Article  CAS  PubMed  Google Scholar 

  • Cooper S (1979) A unifying model for the G1 period in prokaryotes and eukaryotes. Nature 280:17–19

    Article  CAS  PubMed  Google Scholar 

  • Cooper S (1984) The continuum model as a unified description of the division cycle of eukaryotes and prokaryotes. In: Nurse P, Streiblová E (eds) The microbial cell cycle. CRC Press, Boca Raton, pp 7–18

    Google Scholar 

  • Cooper S (1987) On G0 and cell cycle controls. Bioessays 7:220–223

    Article  CAS  PubMed  Google Scholar 

  • Cooper S (1990) The Escherichia coli cell cycle. Res Microbiol 141:17–29

    Article  CAS  PubMed  Google Scholar 

  • Cooper S, Helmstetter CE (1968) Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 31:519–540

    Article  CAS  PubMed  Google Scholar 

  • Corellou F, Camasses A, Ligat L, Peaucellier G, Bouget FY (2005) Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase. Plant Physiol 138:1627–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culotti J, Hartwell LH (1971) Genetic control of the cell division cycle in yeast. II. Seven genes controlling nuclear division. Exp Cell Res 67:389–401

    Article  CAS  PubMed  Google Scholar 

  • Dalmon J (1970) Deoxyribonucleic acid metabolism during the cellular cycle of Chlorella. Bull Inf Sci Tech 145:53–55

    Google Scholar 

  • Dalmon J, Bayen M, Gilet R (1975) Periodic synthesis from Chlorella pyrenoidosa (strain 211/8b and strain Emerson). In: Colloque Internationale. CNRS, Paris, pp 179–183

    Google Scholar 

  • Darley WM, Volcani BE (1969) Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp Cell Res 58:334–342

    Article  CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Evenson D, Staiano-Coico L, Sharpless T, Melamed MR (1979a) Correlation between cell cycle duration and RNA content. J Cell Physiol 100:425–438

    Article  CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Evenson D, Staiano-Coico L, Sharpless T, Melamed MR (1979b) Relationship between RNA content and progression of lymphocytes through S phase of cell cycle. P Natl Acad Sci USA 76:338–362

    Article  Google Scholar 

  • Darzynkiewicz Z, Sharpless T, Staiano CL, Melamed MR (1980) Subcompartments of the G1 phase of cell cycle detected by flow cytometry. P Natl Acad Sci USA 77:6696–6699

    Article  CAS  Google Scholar 

  • De Veylder L, Larkin JC, Schnittger A (2011) Molecular control and function of endoreplication in development and physiology. Trends Plant Sci 16:624–634

    Article  PubMed  CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piegu B, Ball SG, Ral J-P, Bouget F-Y, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. P Natl Acad Sci USA 103:11647–11652

    Article  CAS  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  • Dewitte W, Riou-Khamlichi C, Scofield S, Healy JMS, Jacqmard A, Kilby NJ, Murray JAH (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnan L, John PCL (1983) CeII cycle control by timer and sizer in Chlamydomonas. Nature 304:630–633

    Article  CAS  PubMed  Google Scholar 

  • Donnan L, Carvill EP, Gilliland TJ, John PCL (1985) The cell-cycles of Chlamydomonas and Chlorella. New Phytol 99:1–40

    Article  Google Scholar 

  • Ducommun B, Brambilla P, Felix MA, Franza BR, Karsenti E, Draetta G (1991) Cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 10:3311–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duynstee EE, Schmidt RR (1967) Total starch and amylose levels during synchronous growth of Chlorella pyrenoidosa. Arch Biochem Biophys 119:382–386

    Article  CAS  PubMed  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  CAS  PubMed  Google Scholar 

  • Fang SC, de los Reyes C, Umen JG (2006) Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet 2:1565–1579

    Article  CAS  Google Scholar 

  • Fantes PA (1977) Control of cell size and cycle time in Schizosaccharomyces pombe. J Cell Sci 24:51–67

    CAS  PubMed  Google Scholar 

  • Fantes P, Nurse P (1977) Control of cell-size at division in fission yeast by a growth- modulated size control over nuclear division. Exp Cell Res 107:377–386

    Article  CAS  PubMed  Google Scholar 

  • Farinas B, Mary C, de O Manes C-L, Bhaud Y, Peaucellier G, Moreau H (2006) Natural synchronisation for the study of cell division in the green unicellular alga Ostreococcus tauri. Plant Mol Biol 60:277–292

    Article  CAS  PubMed  Google Scholar 

  • Ferreira P, Hemerly AS, Villarroel R, Van Montagu M, Inze D (1991) The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3:531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fobert PR, Gaudin V, Lunness P, Coen ES, Doonan JH (1996) Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell 8:1465–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsburg SL, Nurse P (1991) Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7:227–256

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa-Yamamoto K (1982) RNA dependence in the cell cycle of V79 cells. J Cell Physiol 112:60–66

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa-Yamamoto K (1983) The relation between length of the cell cycle duration and RNA content in HeLa S3 cells. Cell Struct Funct 8:303–308

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock – the case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45

    Article  CAS  PubMed  Google Scholar 

  • Gould KL, Moreno S, Owen DJ, Sazer S, Nurse P (1991) Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J 10:3297–3309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant D, Swinton DC, Chiang KS (1978) Differential patterns of mitochondrial, chloroplastic and nuclear-DNA synthesis in synchronous cell-cycle of Chlamydomonas reinhardtii. Planta 141:259–267

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH (1971) Genetic control of the cell division cycle in yeast: IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in Yeast, I. Detection of mutants. Proc Natl Acad Sci U S A 66:352–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell L, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74:267–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Murakami S (1982) Chloroplast replication and loss of chloroplast DNA induced by nalidixic acid in Euglena gracilis. Cell Struct Funct 7:111–120

    Article  CAS  Google Scholar 

  • Heinhorst S, Cannon G, Weissbach A (1985) Chloroplast DNA synthesis during the cell cycle in cultured cells of Nicotiana tabacum: inhibition by nalidixic acid and hydroxyurea. Arch Biochim Biophys 239:475–479

    Article  CAS  Google Scholar 

  • Helmstetter CE, Cooper S (1968) DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol 31:507–518

    Article  CAS  PubMed  Google Scholar 

  • Helmstetter CE, Cooper S, Pierucci O (1968) On the bacterial life sequence. Cold Spring Harb Symp Quant Biol 33:809–822

    Article  CAS  PubMed  Google Scholar 

  • Hesse M (1974) Wachstum und Synchronisierung der Alge Bumilleriopsis filiformis Vischer (Xanthophyceae). Planta 120:135–146

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M, Abbriano RM, Polle JEW, Traller JC, Trentacoste EM, Smith SR, Davis AK (2013) Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 17:506–514

    Article  CAS  PubMed  Google Scholar 

  • Hindley J, Phear GA (1984) Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe: patterns of splicing and homology to protein kinases. Gene 31:129–134

    Article  CAS  PubMed  Google Scholar 

  • Hirt H, Pay A, Györgyey J, Bakó L, Neméth K, Bögre L, Schweyen RJ, Heberle-Bors E, Dudits D (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc Natl Acad Sci U S A 88:1636–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins HA, Flora JB, Schmidt RR (1972) Periodic DNA accumulation during the cell cycle of a thermophilic strain of Chlorella pyrenoidosa. Arch Biochim Biophys 153:845–849

    Article  CAS  Google Scholar 

  • Hormanseder E, Tischer T, Mayer TU (2013) Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J 32:2191–2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howard A, Pelc SR (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Lond) [Suppl] 6:261–273

    CAS  Google Scholar 

  • Hunt T (1989) Maturation promoting factor, cyclin and the control of M-phase. Curr Opin Cell Biol 1:268–274

    Article  CAS  PubMed  Google Scholar 

  • Huysman MJJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, Bowler C, Inze D, Van de Peer Y, De Veylder L, Vyverman W (2010) Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 11:1–19

    Article  CAS  Google Scholar 

  • Huysman MJJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, Van den Daele H, Sachse M, Inzé D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L (2013) AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 25:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huysman MJJ, Martens C, Vyverman W, De Veylder L (2014) Protein degradation during the diatom cell cycle: annotation and transcriptional analysis of SCF and APC/C ubiquitin ligase genes in Phaeodactylum tricornutum. Mar Genomics 14:39–46

    Article  PubMed  Google Scholar 

  • Inagaki S, Umeda M (2011) Cell-cycle control and plant development. Int Rev Cell Mol Biol 291:227–261

    Google Scholar 

  • Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  PubMed  CAS  Google Scholar 

  • Itoh R, Takahashi H, Toda K, Kuroiwa H, Kuroiwa T (1997) DNA gyrase involvement in chloroplast-nucleoid division in Cyanidioschyzon merolae. Eur J Cell Biol 73:252–258

    CAS  PubMed  Google Scholar 

  • Iwamura T (1955) Change of nucleic acid content in Chlorella cells during the course of their life cycle. J Biochem 42:575–589

    CAS  Google Scholar 

  • Iwamura T (1962) Nucleotides and nucleic acids. In: Lewin RA (ed) Physiology and biochemistry of algae. Academic, New York, pp 231–238

    Google Scholar 

  • Iwamura T (1966) Nucleic acids in chloroplasts and metabolic DNA. Prog Nucleic Acid Res Mol Biol 5:133–155

    Article  CAS  PubMed  Google Scholar 

  • Iwamura I (1970) DNA species in algae. Annu NY Acad Sci 175:488–510

    Article  CAS  Google Scholar 

  • Iwamura T, Kuwashima S (1969) Two DNA species in chloroplasts of Chlorella. Biochim Biophys Acta 174:330–339

    Article  CAS  PubMed  Google Scholar 

  • Iwamura T, Myers J (1959) Changes in the content and distribution of the nucleic acid bases in Chlorella during the life cycle. Arch Biochem Biophys 84:267–277

    Article  CAS  PubMed  Google Scholar 

  • Iwamura T, Katoh K, Nishimura T (1982) Semi-conservative replication of chloroplast DNA in synchronized Chlorella. Cell Struct Funct 7:71–86

    Article  CAS  Google Scholar 

  • James TW, Jope C (1978) Visualization by fluorescence of chloroplast DNA in higher plants by means of the DNA-specific probe 4,6-diamidino-2-phenylindole. J Cell Biol 79:623–630

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Gu Y, Morgan DO (1996) Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134:963–970

    Article  CAS  PubMed  Google Scholar 

  • John PCL (1984) Control of the cell division cycle in Chlamydomonas. Microbiol Sci 1:96–101

    CAS  PubMed  Google Scholar 

  • John PLC (1987) Control points in the Chlamydomonas cell cycle. In: Robinson DG, Starr RC, Wiesnar W (eds) Algal development. Molecular and cellular aspects. Springer, Berlin, pp 9–16

    Google Scholar 

  • John PCL, McCullough AW, Atkinson AWJ, Forde BG, Gunning BES (1973) The cell cycle in Chlorella. In: Balls M, Billet FS (eds) The cell cycle in development and differentiation. Cambridge University Press, Cambridge, pp 61–76

    Google Scholar 

  • John PC, Sek FJ, Lee MG (1989) A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas, and a similar protein is detectable in higher plants and remote taxa. Plant Cell 1:1185–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Johnston GC, Singer RA (1978) RNA synthesis and control of cell division in yeast S. cerevisiae. Cell 14:951–958

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Miyagishima S (2013) Chloroplast DNA replication is regulated by the redox state independently of chloroplast division in Chlamydomonas reinhardtii. Plant Physiol 161:2102–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanesaki Y, Kobayashi Y, Hanaoka M, Tanaka K (2009) Mg-protoporphyrin IX signaling in Cyanidioschyzon merolae: multiple pathways may involve the retrograde signaling in plant cells. Plant Signal Behav 4:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kates JR, Chiang KS, Jones RF (1968) Studies on DNA replication during synchronized vegetative growth and gametic differentiation in Chlamydomonas reinhardtii. Exp Cell Res 49:121–135

    Article  CAS  PubMed  Google Scholar 

  • Kawano S, Suzuki T, Kuroiwa T (1982) Structural homogeneity of mitochondrial DNA in the mitochondrial nucleoid of Physarum polycephalum. Biochim Biophys Acta 696:290–298

    Article  CAS  PubMed  Google Scholar 

  • Kemp CL, Lee KA (1975) Synchronous growth in the colonial alga Eudorina elegans (Chlorophyceae). J Phycol 12:105–109

    Google Scholar 

  • Khadaroo B, Robbens S, Ferraz C, Derelle E, Eychenie S, Cooke R, Peaucellier G, Delseny M, Demaille J, Van de Peer Y, Picard A, Moreau H (2004) The first green lineage cdc25 dual-specificity phosphatase. Cell Cycle 3:513–518

    Article  CAS  PubMed  Google Scholar 

  • Kirk DL (1998) Volvox: molecular genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge, p 381

    Google Scholar 

  • Knutsen G, Lien T (1981) Properties of synchronous cultures of Chlamydomonas reinhardtii under optimal conditions, and some factors influencing them. Ber Deut Bot Ges 94:599–611

    CAS  Google Scholar 

  • Knutsen G, Lien T, Skoog L (1974) Deoxyribonucleoside triophosphate and DNA synthesis in synchronized cultures of Chlamydomonas. Exp Cell Res 83:442–445

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kanesaki Y, Tanaka A, Kuroiwa H, Kuroiwa T, Tanaka K (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci USA 106:803–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Imamura S, Hanaoka M, Tanaka K (2011) A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 13:483–487

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG (1991) Molecular mechanism of the final steps in the activation of MPF. Cold Spring Harbor Symp Quant Biol 56:585–589

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T, Suzuki T, Ogawa K, Kawano S (1981) The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol 22:381–396

    Google Scholar 

  • Kuroiwa T, Kawano S, Nishibayashi S, Sato C (1982) Epifluorescent microscopic evidence for maternal inheritance of chloroplast DNA. Nature 298:481–483

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T, Kwang WJ, Martin F (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673-690

    Google Scholar 

  • Landrieu I, da Costa M, De Veylder L, Dewitte F, Vandepoele K, Hassan S, Wieruszeski J-M, Faure J-D, Van Montagu M, Inze D, Lippens G (2004a) A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:13380–13385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landrieu I, Hassan S, Sauty M, Dewitte F, Wieruszeski JM, Inze D, De Veylder L, Lippens G (2004b) Characterization of the Arabidopsis thaliana Arath; CDC25 dual-specificity tyrosine phosphatase. Biochem Biophys Res Commun 322:734–739

    Article  CAS  PubMed  Google Scholar 

  • Langan TA, Gautier J, Lohka M, Hollingsworth R, Moreno S, Nurse P, Maller J, Sclafani RA (1989) Mammalian growth-associated H1 histone kinase: a homologue of cdc2+/CDC28 protein kinases controlling mitotic entry in yeast and frog cells. Mol Cell Biol 9:3860–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Yang HY (2003) Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 22:435–449

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Das A, Yamaguchi M, Hashimoto J, Tsutsumi N, Uchimiya H, Umeda M (2003) Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J 34:417–425

    Article  CAS  PubMed  Google Scholar 

  • Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V, Čížková M, Brányiková I, Vítová M (2013) The microalga Parachlorella kessleri––a novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107

    Article  CAS  PubMed  Google Scholar 

  • Lieberman HB (1995) Extragenic suppressors of Schizosaccharomyces-pombe Rad9 mutations uncouple radioresistance and hydroxyurea sensitivity from cell-cycle checkpoint control. Genetics 141:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman I, Abrams R, Ove P (1963) Changes in the metabolism of ribonucleic acid preceding the synthesis of deoxyribonucleic acid in mammalian cells cultured from the animal. J Biol Chem 238:2141–2149

    CAS  PubMed  Google Scholar 

  • Lien T, Knutsen G (1973) Phosphate as a control factor in cell division of Chlamydomonas reinhardti, studied in synchronous culture. Exp Cell Res 78:79–88

    Article  CAS  PubMed  Google Scholar 

  • Lien T, Knutsen G (1976) Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardii. Arch Microbiol 108:189–194

    Article  CAS  PubMed  Google Scholar 

  • Lien T, Knutsen G (1979) Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): a review of optimal conditions. J Phycol 15:191–200

    Article  CAS  Google Scholar 

  • Liskay MR, Leonard KE, Prescott DM (1979) Different chinese hamster cell lines express a G1 period for different reasons. Somat Cell Genet 5:615–623

    Article  CAS  PubMed  Google Scholar 

  • Liskay MR, Kornfeld B, Fullerton P, Evans R (1980) Protein synthesis and the presence or absence of a measurable G1 in cultured chinese hamster cells. J Cell Physiol 104:461–467

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen H (1957) Synchrone Zellteilung von Chlorella bei verschiedenen Licht-Dunkel -Wechseln. Flora 144:473–496

    Google Scholar 

  • Lorenzen H (1980) Time measurements in unicellular algae and its influence on productivity. In: Shelef G, Soeder CJ (eds) Algae Biomass. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 411–419

    Google Scholar 

  • Lorenzen H, Albrodt J (1981) Timing and circadian rhythm and their importance for metabolic regulation in Chlorella. Ber Deut Bot Ges 94:347–355

    CAS  Google Scholar 

  • Lorenzen H, Schleif J (1966) Zur Bedeutung der kürzest moeglichen Generationsdauer in Synchronkulturen von Chlorella. Flora 156:673–683

    Google Scholar 

  • Magyar Z, Meszaros T, Miskolczi P, Deak M, Feher A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bilgin M, Bako L, Koncz C, Dudits D (1997) Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9:223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Meijer L, Arion D, Golsteyn R, Pines J, Brizuela L, Hunt T, Beach D (1989) Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. EMBO J 8:2275–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1191–1243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH (1992) A family of human cdc2-related protein kinases. EMBO J 11:2909–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minshull J (1989) Cyclin and MPF: driving mitosis. Bioessays 11:149–151

    Article  CAS  Google Scholar 

  • Minshull J, Blow JJ, Hunt T (1989a) Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56:947–956

    Article  CAS  PubMed  Google Scholar 

  • Minshull J, Pines J, Golsteyn R, Standart N, Mackie S, Colman A, Blow J, Ruderman JV, Wu M, Hunt T (1989b) The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci Suppl 12:77–97

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, De Veylder L, Van Montagu M, Inzé D (1999) Cyclin-dependent kinases and cell division in plants – the nexus. Plant Cell 11:509–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchison JM (1971) The biology of the cell cycle. Cambridge University Press, Cambridge, 313 pp

    Google Scholar 

  • Mitchison JM (1977) The timing of cell cycle events. In: Little M, Laweletz N, Petzelt C, Ponstingle H, Schroeter D, Zimmerman HP (eds) Mitosis, facts and questions. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Miyagishima SY, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807

    Article  CAS  PubMed  Google Scholar 

  • Moberg S, Knutsen G, Goksoyr J (1968) The point of no return concept in cell division. The effects of some metabolic inhibitors on synchronized Chlorella pyrenoidosa. Physiol Plant 21:390–400

    Article  CAS  Google Scholar 

  • Moreno S, Hayles J, Nurse P (1989) Regulation of p34cdc2 protein-kinase during mitosis. Cell 58:361–372

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  • Morimura Y (1959) Synchronous culture of Chlorella. I. Kinetic analysis of the life cycle of Chlorella ellipsoidea as affected by changes of temperature and light intensity. Plant Cell Physiol 1:49–62

    Google Scholar 

  • Moser BA, Russell P (2000) Cell cycle regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 3:631–636

    Article  CAS  PubMed  Google Scholar 

  • Moulager M, Monnier A, Jesson B, Bouvet R, Mosser J, Schwartz C, Garnier L, Corellou F, Bouget F-Y (2007) Light-gependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:1360–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulager M, Corellou F, Verge V, Escande M-L, Bouget F-Y (2010) Integration of light signals by the retinoblastoma pathway in the control of S phase entry in the picophytoplanktonic cell Ostreococcus. PLoS Genet 6:1–13

    Article  CAS  Google Scholar 

  • Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Kuroiwa T, Fukuda I (1984) Chloroplast nucleoids in a unicellular hot spring alga Cyanidium caldarium and related algae. Experientia 40:363–364

    Article  Google Scholar 

  • Nasmyth KA (1979) A control acting over the initiation of DNA replication in the yeast Schizosaccharomyces pombe. J Cell Sci 36:155–168

    CAS  PubMed  Google Scholar 

  • Nasmyth K (1996) Viewpoint: putting the cell cycle in order. Science 274:1643–1645

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K, Nurse P (1981) Cell-division cycle mutants altered in DNA-replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 182:119–124

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K, Nurse P, Fraser RSS (1979) The effect of cell mass on the cell cycle timing and duration of S-phase in fission yeast. J Cell Sci 39:215–233

    CAS  PubMed  Google Scholar 

  • Nelle R, Tischner R, Harnischfeger G, Lorenzen H (1975) Correlation between pigment systems and photosynthetic activity during the developmental cycle of Chlorella. Biochem Physiol Pflanz 167:463–472

    CAS  Google Scholar 

  • Nemoto Y, Kawano S, Kondoh K, Nagata T, Kuroiwa T (1990) Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. III. Isolation of chloroplast-nuclei from mesophyll protoplasts and identification of chloroplast DNA-binding proteins. Plant Cell Physiol 31:767–776

    CAS  Google Scholar 

  • Nemoto Y, Kawano S, Kondoh K, Nagata T, Kuroiwa T (1991) Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. IV. Association of chloroplast-DNA with proteins at several specific sites in isolated chloroplast-nuclei. Plant Cell Physiol 32:131–141

    CAS  Google Scholar 

  • Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  • Newport JW, Kirschner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37:731–742

    Article  CAS  PubMed  Google Scholar 

  • Nurse P (1975) Genetic control of cell size at division in yeast. Nature 256:547–551

    Article  CAS  PubMed  Google Scholar 

  • Nurse P, Fantes P (1977) Transition-probability and cell-cycle initiation in yeast. Nature 267:647–647

    Article  Google Scholar 

  • Nurse P, Thuriaux P (1977) Controls over the timing of DNA replication during the cell cycle of fission yeast. Exp Cell Res 107:365–375

    Article  CAS  PubMed  Google Scholar 

  • Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146:167178

    Article  Google Scholar 

  • Nurse P, Durkacz B, Hayles J (1983) Cell cycle control genes of the unicellular eukaryote Schizosaccharomyces pombe. Biol Cell 7:483–484

    Google Scholar 

  • Ohad I (1975) Control by light of synthesis of membrane proteins of cytoplasmic and chloroplastic origin and their role in the formation and function of the active center of PSII and PSI in Chlamydomonas reinhardi Y-L. In: Colloque Internationale. CNRS, Paris, pp 267–268

    Google Scholar 

  • Parthier B (1982) The cooperation of nuclear and plastid genomes in plastid biogenesis and differentiation. Biochem Physiol Pflanzen 177:282–317

    Google Scholar 

  • Pienkos P, Walfield A, Hershberger CL (1974) Effect of nalidixic acid on Euglena gracilis: induced loss of chloroplast deoxyribonucleic acid. Arch Biochem Biophys 165:548–553

    Article  CAS  PubMed  Google Scholar 

  • Pines J (1996) Cell cycle: reaching for a role for the Cks proteins. Curr Biol 6:1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Pirson A, Lorenzen H (1966) Synchronized dividing algae. Plant Physiol 17:439–458

    Article  Google Scholar 

  • Pirson A, Lorenzen H, Ruppel HG (1963) Der Licht-Dunkel-Wechsel als synchronisierendes Prinzip. In: Ashida J (ed) Studies on microalgae and photosynthetic bacteria, Japanese Society of Plant Physiologists, University of Tokyo Press, Tokyo, pp 127–139

    Google Scholar 

  • Porceddu A, Stals H, Reichheldt JP, Segers G, De Veylder L, Barroco RD, Casteels P, Van Montagu M, Inze D, Mironov V (2001) A plant-specific cyclin-dependent kinase is involved in the control of G(2)/M progression in plants. J Biol Chem 276:36354–36360

    Article  CAS  PubMed  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2013) Oil overproduction by means of microalgae. In: Bajpai RK, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Dordrecht, pp 240–274

    Google Scholar 

  • Rading MM, Engel TA, Lipowsky R, Vallertani A (2011) Stationary size distributions of growing cells with binary and multiple cell division. J Stat Phys 145:1–22

    Article  Google Scholar 

  • Reed SI (1997) Control of the G1/S transition. Cancer Surv 29:7–23

    CAS  PubMed  Google Scholar 

  • Reed SI, Hadwiger JA, Lörincz AT (1985) Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc Natl Acad Sci U S A 82:4055–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inze D, Jacobs T, Kouchi H, Rouze P, Sauter M, Savoure A, Sorrell DA, Sundaresan V, Murray JAH (1996) Plant cyclins: a unified nomenclature for plant A-, B- and D- type cyclins based on sequence organization. Plant Mol Biol 32:1003–1018

    Article  CAS  PubMed  Google Scholar 

  • Řezanka T, Petranková M, Cepák V, Přibyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269

    Article  CAS  Google Scholar 

  • Robbens S, Khadaroo B, Camasses A, Derelle E, Ferraz C, Inze D, Van de Peer Y, Moreau H (2005) Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Mol Biol Evol 22:589–597

    Article  CAS  PubMed  Google Scholar 

  • Robreau G, Le Gal Y (1974) Effect of nalidixic acid in Chlamydomonas reinhardtii. In: Colloque Internationale. CNRS, Paris, pp 167–177

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Rupeš I (2002) Checking cell size in yeast. Trends Genet 18:479–485

    Article  PubMed  Google Scholar 

  • Russell P, Nurse P (1986) Cdc25 + functions as an inducer in the mitotic control of fission yeast. Cell 45:145–153

    Google Scholar 

  • Russell P, Nurse P (1987) Negative regulation of mitosis by wee1 +, a gene encoding a protein kinase homolog. Cell 49:559–567

    Google Scholar 

  • Segers G, Gadisseur I, Bergounioux C, de Almeida EJ, Jacqmard A, Van Montagu M, Inzé D (1996) The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J 10:601–612

    Google Scholar 

  • Senger H, Bishop NI (1966) The light-dependent formation of nucleic acids in cultures of synchronized Chlorella. Plant Cell Physiol 7:441–455

    CAS  Google Scholar 

  • Senger H, Bishop NI (1969) Light-dependent formation of nucleic acids and its relation to the induction of synchronous cell division in Chlorella. In: Padilla GM, Whitson GL, Cameron IL (eds) The cell cycle. Academic, New York, pp 180–201

    Google Scholar 

  • Shen WH (2002) The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci 7:505–511

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Kato J, Quelle DE, Matsuoka M, Roussel MF (1994) D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of the mitogenic response. Cold Spring Harbor Symp Quant Biol 59:11–19

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 13:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simanis V, Nurse P (1986) The cell-cycle control gene cdc2 + of fission yeast encodes a protein-kinase potentially regulated by phosphorylation. Cell 45:261–268

    Google Scholar 

  • Singer RA, Johnston GC (1979) Nalidixic acid causes a transient G1 arrest in the yeast Saccharomyces cerevisiae. Mol Gen Genet 176:37–39

    Article  CAS  PubMed  Google Scholar 

  • Singer RA, Johnston GC (1981) Nature of G1 phase of yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 78:520–531

    Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88:3548–3555

    Article  CAS  Google Scholar 

  • Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano C, Su Y, Nakagami H, Shinmyo A, Doonan JH, Sekine M, Murray JAH (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol 126:1214–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spudich JL, Sager R (1980) Regulation of the Chlamydomonas cell-cycle by light and dark. J Cell Biol 85:136–146

    Article  CAS  PubMed  Google Scholar 

  • Sueoka N, Chiang KS, Kates JR (1967) Deoxyribonucleic acid replication in meiosis of zoospores. J Mol Biol 25:47–66

    Article  CAS  PubMed  Google Scholar 

  • Sullivan WC, Volcani BE (1973) Role of silicon in diatom metabolism. III. The effects of silicic acid on DNA polymerase TMP kinase and DNA synthesis in Cylindrotheca fusiformis. Biochim Biophys Acta 308:212–229

    Article  CAS  PubMed  Google Scholar 

  • Šetlík I, Zachleder V (1981) Cell cycle of algae. In: Nečas O, Streiblová E, Vondrejs V (eds) Cell cycle of microorganisms. Academia Praha, Praha, pp 152–205 (in Czech)

    Google Scholar 

  • Šetlík I, Zachleder V (1983) Overlapping cell reproductive sequences in algae. In: Chaloupka J, Kotyk A, Streiblová E (eds) Progress in cell cycle controls. Institute of Microbiology, Czechoslovak Academy of Sciences, Prague, pp 51–77

    Google Scholar 

  • Šetlík I, Zachleder V (1984) The multiple fission cell reproductive patterns in algae. In: Nurse P, Streiblová E (eds) The microbial cell cycle. CRC Press, Boca Raton, pp 253–279

    Google Scholar 

  • Šetlík I, Berková E, Doucha J, Kubín S, Vendlová J, Zachleder V (1972) The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol/Suppl 41, Algol Stud 7:172–217

    Google Scholar 

  • Šetlík I, Zachleder V, Doucha J, Berková E, Bartoš J (1975) The nature of temperature block in the sequence of reproductive processes in Chlorella vulgaris BEIJERINCK. Arch Hydrobiol/Suppl 49, Algol Stud 14:70–104

    Google Scholar 

  • Šetlík I, Ballin G, Doucha J, Zachleder V (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of sulphur starvation. Biol Plant 30:161–169

    Article  Google Scholar 

  • Tamiya H (1964) Growth and cell division of Chlorella. In: Zeuthen E (ed) Synchrony in cell division and growth. Wiley/J.Z. Sons Inc., New York, pp 247–305

    Google Scholar 

  • Tamiya H (1966) Synchronous cultures of algae. Plant Physiol 17:1–26

    Article  Google Scholar 

  • Tamiya H, Iwamura T, Shibata K, Hase E, Nihei T (1953) Correlation between photosynthesis and light-independent metabolism in growth of Chlorella. Biochim Biophys Acta 12:23–40

    Article  CAS  PubMed  Google Scholar 

  • Teixeira LK, Reed SI (2013) Ubiquitin ligases and cell cycle control. Annu Rev Biochem 82:387–414

    Article  CAS  PubMed  Google Scholar 

  • Thuriaux P, Nurse P, Carter B (1978) Mutants altered in the control co-ordinating cell division with cell growth in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 161:215–220

    CAS  PubMed  Google Scholar 

  • Tucker RG, Darden WH (1972) Nucleic acid synthesis during the vegetative life cycle of Volvox aureus M5. Arch Mikrobiol 84:87–94

    Article  CAS  PubMed  Google Scholar 

  • Tukaj Z, Kubínová A, Zachleder V (1996) Effect of irradiance on growth and reproductive processes during the cell cycle in Scenedesmus armatus (Chlorophyta). J Phycol 32:624–631

    Article  CAS  Google Scholar 

  • Tulin F, Cross FR (2014) A microbial avenue to cell cycle control in the plant superkingdom. Plant Cell 26:4019–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson JJ, Novak B (2008) Temporal organization of the cell cycle. Curr Biol 18:759–768

    Article  CAS  Google Scholar 

  • Umen JG, Goodenough UW (2001) Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev 15:1652–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf H, Zachleder V (1979) Die Synthese von Proteinen und Nukleinsaeuren als Testgrundlage. Wiss Hft Pädagog Hochschule Koethen 3:63–72

    Google Scholar 

  • van den Heuvel S, Dyson NJ (2008) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9:713–724

    Article  PubMed  CAS  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae, an introduction to phycology. Cambridge University Press, Cambridge, 623 pp

    Google Scholar 

  • Vassef AA, Flora JB, Weeks JG, Bibbs BS, Schmidt RR (1973) The effects of enzyme synthesis and stability and of deoxyribonucleic acid replication on the cellular levels of aspartate transcarbamylase during the cell cycle of eukaryote Chlorella. J Biol Chem 248:1976–1987

    CAS  PubMed  Google Scholar 

  • Vítová M, Zachleder V (2005) Points of commitment to reproductive events as a tool for analysis of the cell cycle in synchronous cultures of algae. Folia Microbiol 50:141–149

    Article  Google Scholar 

  • Vítová M, Hendrychová J, Cepák V, Zachleder V (2005) Visualization of DNA-containing structures in various species of Chlorophyta, Rhodophyta and Cyanophyta using SYBR green I dye. Folia Microbiol 50:333–340

    Article  Google Scholar 

  • Vítová M, Bišová K, Hlavová M, Kawano S, Zachleder V, Čížková M (2011a) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by temperature. Planta 234:599–608

    Article  PubMed  CAS  Google Scholar 

  • Vítová M, Bišová K, Umysová D, Hlavová M, Kawano S, Zachleder V, Čížková M (2011b) Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity. Planta 233:75–86

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Fowke LC, Crosby WL (1997) A plant cyclin-dependent kinase inhibitor gene. Nature 386:451–452

    Google Scholar 

  • Wanka F (1959) Untersuchungen über die Wirkung des Lichts auf die Zellteilung von Chlorella pyrenoidosa. Arch Mikrobiol 34:161–188

    Article  CAS  PubMed  Google Scholar 

  • Wanka F (1962) Über den Einfluss des Lichts auf die Nucleinsäuresynthese bei Synchronkulturen von Chlorella pyrenoidosa. Ber Deut Bot Ges 75:457–464

    Google Scholar 

  • Wanka F (1967) The effect of light on DNA synthesis and related processes in synchronous cultures of Chlorella. Arch Mikrobiol 5:257–269

    Article  Google Scholar 

  • Wanka F (1968) Ultrastructural changes during normal and colchicine inhibited cell division of Chlorella. Protoplasma 66:105–130

    Article  CAS  PubMed  Google Scholar 

  • Wanka F, Aelen JMA (1973) The effect of light on RNA and nucleotide synthesis in synchronous cultures of Chlorella. Plant Sci Lett 1:129–135

    Article  CAS  Google Scholar 

  • Wanka F, Geraedts J (1972) Effect of temperature in the regulation of DNA synthesis in synchronous cultures of Chlorella. Exp Cell Res 71:188–192

    Article  CAS  PubMed  Google Scholar 

  • Wanka F, Moors J, Krijzer FNCM (1972) Dissociation of nuclear DNA replication from concomitant protein synthesis in synchronous cultures of Chlorella. Biochim Biophys Acta 269:153–161

    Article  CAS  PubMed  Google Scholar 

  • Williamson QH, Fennel OJ (1975) The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol 12:335–351

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Chiang KS (1977) Temporal programming of chloroplast and cytoplasmic ribosomal-RNA transcription in synchronous cell-cycle of Chlamydomonas reinhardtii. J Cell Biol 72:470–481

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CLF, Bogorad L (1970) Evidence for variation in the quantity of DNA among plastids of Acetabularia. J Cell Biol 44:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates I, Darley M, Kochert G (1975) Separation of cell types in synchronized cultures of Volvox carteri. Cytobios 12:211–223

    Google Scholar 

  • Zachleder V (1994) The effect of hydroxyurea and fluorodeoxyuridine on cell cycle events in the chlorococcal alga Scenedesmus quadricauda (Chlorophyta). J Phycol 30:274–279

    Article  CAS  Google Scholar 

  • Zachleder V (1995) Regulation of growth processes during the cell cycle of the chlorococcal alga Scenedesmus quadricauda under a DNA replication block. J Phycol 30:941–947

    Article  Google Scholar 

  • Zachleder V, Brányiková I (2013) Starch overproduction by means of algae. In: Bajpai RK, Prokop A, Zappi M (eds) Algal biorefineries. Springer, Dordrecht, pp 217–240

    Google Scholar 

  • Zachleder V, Cepák V (1987a) The effect of light on the number of chloroplast nucleoids in daughter cells of the alga Scenedesmus quadricauda. Protoplasma 138:37–44

    Article  Google Scholar 

  • Zachleder V, Cepák V (1987b) Variations in chloroplast nucleoid number during the cell cycle in the alga Scenedesmus quadricauda grown under different light conditions. Protoplasma 141:74–82

    Article  Google Scholar 

  • Zachleder V, Cepák V (1987c) Visualization of DNA containing structures by fluorochrome DAPI in those algal cells which are not freely permeable to the dye. Arch Hydrobiol/Suppl 78, Algol Stud 47:157–168

    Google Scholar 

  • Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plant 24:341–353

    Article  CAS  Google Scholar 

  • Zachleder V, Šetlík I (1988) Distinct controls of DNA-replication and of nuclear division in the cell-cycles of the chlorococcal alga Scenedesmus quadricauda. J Cell Sci 91:531–539

    CAS  Google Scholar 

  • Zachleder V, Šetlík I (1990) Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda. J Cell Sci 97:631–638

    Google Scholar 

  • Zachleder V, van den Ende H (1992) Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J Cell Sci 102:469–474

    CAS  Google Scholar 

  • Zachleder V, Doucha J, Berkova E, Setlik I (1975) Effect of synchronizing dark period on populations of Scenedesmus quadricauda. Biol Plant 17:416–433

    Article  CAS  Google Scholar 

  • Zachleder V, Abarzua S, Wittenburg E (1983) Effect of 3,4-benzopyrene on the course of the cell cycle events in the chlorococcal alga Scenedesmus quadricauda. Planta 157:432–440

    Article  CAS  PubMed  Google Scholar 

  • Zachleder V, Ballin G, Doucha J, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of phosphorus starvation. Biol Plant 30:92–99

    Article  CAS  Google Scholar 

  • Zachleder V, Kuptsova ES, Los DA, Cepák V, Kubín Š, Shapiguzov JM, Semenenko VE (1989) Division of chloroplast nucleoids and replication of chloroplast DNA during the cell cycle of Dunaliella salina grown under blue and red light. Protoplasma 150:160–167

    Article  Google Scholar 

  • Zachleder V, Kubinová A, Cepák V (1990) Relationships between chloroplast and cytoplasmic rRNA accumulation during the cell cycle of the green alga Scenedesmus quadricauda. Plant Sci 66:35–41

    Article  CAS  Google Scholar 

  • Zachleder V, Kawano S, Kuroiwa T (1995) The course of chloroplast DNA replication and its relationship to other reproductive processes in the chloroplast and nucleocytoplasmic compartment during the cell cycle of the alga Scenedesmus quadricauda. Protoplasma 188:245–251

    Article  Google Scholar 

  • Zachleder V, Kawano S, Kuroiwa T (1996) Uncoupling of chloroplast reproductive events from cell cycle division processes by 5-fluorodeoxyuridine in the alga Scenedesmus quadricauda. Protoplasma 192:228–234

    Article  CAS  Google Scholar 

  • Zachleder V, Schläfli O, Boschetti A (1997) Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta). J Phycol 33:673–681

    Article  CAS  Google Scholar 

  • Zachleder V, Bišová K, Vítová M, Kubín Š, Hendrychová J (2002) Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur J Phycol 37:361–371

    Article  Google Scholar 

  • Zachleder V, Kawano S, Cepák V, Kuroiwa T (2004) The effect of nalidixic acid on growth and reproductive events in nucleocytosolic and chloroplast compartments in the alga Scenedesmus quadricauda. Folia Microbiol 49:441–451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Programme of Sustainability I, ID: LO1416 and by the Czech Academy of Sciences (grant number RVO 61388971). V.Z. and K.B. were supported by grant of Grant Agency of the Czech Republic no. 15-09231S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilém Zachleder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zachleder, V., Bišová, K., Vítová, M. (2016). The Cell Cycle of Microalgae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_1

Download citation

Publish with us

Policies and ethics