Skip to main content

The Microenvironment of Lung Cancer and Therapeutic Implications

  • Chapter
  • First Online:
Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management

Abstract

The tumor microenvironment (TME) represents a milieu that enables tumor cells to acquire the hallmarks of cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. Concerted interactions between genetically altered tumor cells and genetically stable intratumoral stromal cells result in an “activated/reprogramed” stroma that promotes carcinogenesis by contributing to inflammation, immune suppression, therapeutic resistance, and generating premetastatic niches that support the initiation and establishment of distant metastasis. The lungs present a unique milieu in which tumors progress in collusion with the TME, as evidenced by regions of aberrant angiogenesis, acidosis and hypoxia. Inflammation plays an important role in the pathogenesis of lung cancer, and pulmonary disorders in lung cancer patients such as chronic obstructive pulmonary disease (COPD) and emphysema, constitute comorbid conditions and are independent risk factors for lung cancer. The TME also contributes to immune suppression, induces epithelial-to-mesenchymal transition (EMT) and diminishes efficacy of chemotherapies. Thus, the TME has begun to emerge as the “Achilles heel” of the disease, and constitutes an attractive target for anti-cancer therapy. Drugs targeting the components of the TME are making their way into clinical trials. Here, we will focus on recent advances and emerging concepts regarding the intriguing role of the TME in lung cancer progression, and discuss future directions in the context of novel diagnostic and therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao D, Mittal V (2009) The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med 15:333–343

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  4. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    Article  PubMed  CAS  Google Scholar 

  6. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gao D, Vahdat LT, Wong S, Chang JC, Mittal V (2012) Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res 72:4883–4889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee G, Walser TC, Dubinett SM (2009) Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med 15:303–307

    Article  PubMed  CAS  Google Scholar 

  10. Punturieri A, Szabo E, Croxton TL, Shapiro SD, Dubinett SM (2009) Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst 101:554–559

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  PubMed  CAS  Google Scholar 

  13. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  14. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H, Polverini PJ, Nor J, Kitajewski J, Wang CY (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8:13–23

    Article  PubMed  CAS  Google Scholar 

  15. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gadea BB, Joyce JA (2006) Tumour-host interactions: implications for developing anti-cancer therapies. Expert Rev Mol Med 8:1–32

    Article  PubMed  Google Scholar 

  17. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520

    Article  PubMed  CAS  Google Scholar 

  18. Bergers G, Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  19. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  20. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  21. Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21

    Article  PubMed  CAS  Google Scholar 

  22. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    Article  PubMed  CAS  Google Scholar 

  23. Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379:1591–1601

    Article  PubMed  CAS  Google Scholar 

  24. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  25. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  26. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  28. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4, e6562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  30. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  32. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    Article  PubMed  CAS  Google Scholar 

  33. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25:2465–2479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272

    Article  PubMed  CAS  Google Scholar 

  36. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  37. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12:715–723

    Article  PubMed  CAS  Google Scholar 

  39. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    Article  PubMed  CAS  Google Scholar 

  41. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    Article  PubMed  CAS  Google Scholar 

  42. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  PubMed  CAS  Google Scholar 

  43. Chioda M, Peranzoni E, Desantis G, Papalini F, Falisi E, Solito S, Samantha S, Mandruzzato S, Bronte V (2011) Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev 30:27–43

    Article  PubMed  Google Scholar 

  44. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53–65

    Article  PubMed  CAS  Google Scholar 

  47. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50:799–807

    Article  PubMed  CAS  Google Scholar 

  50. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Trikha P, Carson WE (2014) Signaling pathways involved in MDSC regulation. Biochim Biophys Acta 1846:55–65

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244

    Article  PubMed  CAS  Google Scholar 

  55. Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, Carson WE (2013) Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140:13–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63:4441–4449

    PubMed  CAS  Google Scholar 

  57. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Google Scholar 

  58. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  PubMed  CAS  Google Scholar 

  59. Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ, Wagenaar SS, Vanderschueren RG, van Zandwijk N, Mooi WJ (1990) K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 323:561–565

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491–494

    Article  PubMed  CAS  Google Scholar 

  61. Zochbauer-Muller S, Gazdar AF, Minna JD (2002) Molecular pathogenesis of lung cancer. Annu Rev Physiol 64:681–708

    Article  PubMed  CAS  Google Scholar 

  62. Haber DA, Bell DW, Sordella R, Kwak EL, Godin-Heymann N, Sharma SV, Lynch TJ, Settleman J (2005) Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors. Cold Spring Harb Symp Quant Biol 70:419–426

    Article  PubMed  CAS  Google Scholar 

  63. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  64. Sequist LV, Martins RG, Spigel D, Grunberg SM, Spira A, Jänne PA, Joshi VA, McCollum D, Evans TL, Muzikansky A et al (2008) First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 26:2442–2449

    Article  PubMed  CAS  Google Scholar 

  65. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739

    Article  PubMed  CAS  Google Scholar 

  66. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  67. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2, e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, André S, Piccart M, Campone M, Brain E et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    Article  PubMed  CAS  Google Scholar 

  69. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  PubMed  CAS  Google Scholar 

  70. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, Chi JT, van de Rijn M, Botstein D, Brown PO (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2, E7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M et al (2011) Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A 108:7160–7165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ito M, Ishii G, Nagai K, Maeda R, Nakano Y, Ochiai A (2012) Prognostic impact of cancer-associated stromal cells in stage I lung adenocarcinoma patients. Chest 142:151–8

    Article  PubMed  Google Scholar 

  73. Nakamura H, Saji H, Ogata A, Hosaka M, Hagiwara M, Saijo T, Kawasaki N, Kato H (2003) cDNA microarray analysis of gene expression in pathologic stage IA nonsmall cell lung carcinomas. Cancer 97:2798–2805

    Article  PubMed  CAS  Google Scholar 

  74. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  75. Ilie M, Long E, Hofman V, Selva E, Bonnetaud C, Boyer J, Vénissac N, Sanfiorenzo C, Ferrua B, Marquette CH et al (2014) Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 110:1236–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sharma S, Dubinett S, Salgia R (2012) CD14(+)S100A9(+) myeloid-derived suppressor cells portend decreased survival in patients with advanced lung cancer. Am J Respir Crit Care Med 186:940–941

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bellocq A, Antoine M, Flahault A, Philippe C, Crestani B, Bernaudin JF, Mayaud C, Milleron B, Baud L, Cadranel J (1998) Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152:83–92

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Eck M, Schmausser B, Scheller K, Brändlein S, Müller-Hermelink HK (2003) Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clin Exp Immunol 134:508–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kimura YN, Watari K, Fotovati A, Hosoi F, Yasumoto K, Izumi H, Kohno K, Umezawa K, Iguchi H, Shirouzu K et al (2007) Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 98:2009–2018

    Article  PubMed  CAS  Google Scholar 

  81. Al-Shibli K, Al-Saad S, Donnem T, Persson M, Bremnes RM, Busund LT (2009) The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology 55:301–312

    Article  PubMed  Google Scholar 

  82. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417

    Article  PubMed  CAS  Google Scholar 

  83. Becker M, Müller CB, De Bastiani MA, Klamt F (2014) The prognostic impact of tumor-associated macrophages and intra-tumoral apoptosis in non-small cell lung cancer. Histol Histopathol 29:21–31

    PubMed  Google Scholar 

  84. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, Ma J, Ma L, You Z (2010) The number and microlocalization of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer. BMC Cancer 10:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692

    Article  PubMed  CAS  Google Scholar 

  86. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14:5220–5227

    Article  PubMed  CAS  Google Scholar 

  87. Wakabayashi O, Yamazaki K, Oizumi S, Hommura F, Kinoshita I, Ogura S, Dosaka-Akita H, Nishimura M (2003) CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci 94:1003–1009

    Article  PubMed  CAS  Google Scholar 

  88. Shimizu K, Nakata M, Hirami Y, Yukawa T, Maeda A, Tanemoto K (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5:585–590

    Article  PubMed  Google Scholar 

  89. Edlund K, Lindskog C, Saito A, Berglund A, Pontén F, Göransson-Kultima H, Isaksson A, Jirström K, Planck M, Johansson L et al (2012) CD99 is a novel prognostic stromal marker in non-small cell lung cancer. Int J Cancer 131:2264–2273

    Article  PubMed  CAS  Google Scholar 

  90. Lohr M, Edlund K, Botling J, Hammad S, Hellwig B, Othman A, Berglund A, Lambe M, Holmberg L, Ekman S et al (2013) The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett 333:222–228

    Article  PubMed  CAS  Google Scholar 

  91. Demarchi LM, Reis MM, Palomino SA, Farhat C, Takagaki TY, Beyruti R, Saldiva PH, Capelozzi VL (2000) Prognostic values of stromal proportion and PCNA, Ki-67, and p53 proteins in patients with resected adenocarcinoma of the lung. Mod Pathol 13:511–520

    Article  PubMed  CAS  Google Scholar 

  92. Maeshima AM, Niki T, Maeshima A, Yamada T, Kondo H, Matsuno Y (2002) Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer 95:2546–2554

    Article  PubMed  Google Scholar 

  93. Shimosato Y, Suzuki A, Hashimoto T, Nishiwaki Y, Kodama T, Yoneyama T, Kameya T (1980) Prognostic implications of fibrotic focus (scar) in small peripheral lung cancers. Am J Surg Pathol 4:365–373

    Article  PubMed  CAS  Google Scholar 

  94. Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  95. Madar S, Goldstein I, Rotter V (2013) ‘Cancer associated fibroblasts’–more than meets the eye. Trends Mol Med 19:447–453

    Article  PubMed  CAS  Google Scholar 

  96. Polanska UM, Orimo A (2013) Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 228:1651–1657

    Article  PubMed  CAS  Google Scholar 

  97. Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, Camps C, Marinez I, Busund LT (2011) The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 6:209–217

    Article  PubMed  Google Scholar 

  98. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR, Wright NA (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    Article  PubMed  CAS  Google Scholar 

  99. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  100. Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  PubMed  CAS  Google Scholar 

  101. Tripathi M, Billet S, Bhowmick NA (2012) Understanding the role of stromal fibroblasts in cancer progression. Cell Adh Migr 6:231–235

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci 15:166–179

    Article  CAS  Google Scholar 

  103. Abulaiti A, Shintani Y, Funaki S, Nakagiri T, Inoue M, Sawabata N, Minami M, Okumura M (2013) Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-β signaling by IL-6. Lung Cancer 82:204–213

    Article  PubMed  Google Scholar 

  104. Vicent S, Sayles LC, Vaka D, Khatri P, Gevaert O, Chen R, Zheng Y, Gillespie AK, Clarke N, Xu Y et al (2012) Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res 72:5744–5756

    Article  PubMed  CAS  Google Scholar 

  105. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY et al (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5:3472

    PubMed  Google Scholar 

  106. Shintani Y, Abulaiti A, Kimura T, Funaki S, Nakagiri T, Inoue M, Sawabata N, Minami M, Morii E, Okumura M (2013) Pulmonary fibroblasts induce epithelial mesenchymal transition and some characteristics of stem cells in non-small cell lung cancer. Ann Thorac Surg 96:425–433

    Article  PubMed  Google Scholar 

  107. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, Watanabe G, Kayano Y, Nishioka Y, Sone S et al (2009) Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 15:6630–6638

    Article  PubMed  CAS  Google Scholar 

  108. Yano S, Yamada T, Takeuchi S, Tachibana K, Minami Y, Yatabe Y, Mitsudomi T, Tanaka H, Kimura T, Kudoh S et al (2011) Hepatocyte growth factor expression in EGFR mutant lung cancer with intrinsic and acquired resistance to tyrosine kinase inhibitors in a Japanese cohort. J Thorac Oncol 6:2011–2017

    Article  PubMed  Google Scholar 

  109. Chaudhri VK, Salzler GG, Dick SA, Buckman MS, Sordella R, Karoly ED, Mohney R, Stiles BM, Elemento O, Altorki NK et al (2013) Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol Cancer Res 11:579–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Franses JW, Edelman ER (2011) The evolution of endothelial regulatory paradigms in cancer biology and vascular repair. Cancer Res 71:7339–7344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  PubMed  CAS  Google Scholar 

  112. Franses JW, Baker AB, Chitalia VC, Edelman ER (2011) Stromal endothelial cells directly influence cancer progression. Sci Transl Med 3:66ra65

    Article  CAS  Google Scholar 

  113. Dundar E, Oner U, Peker BC, Metintas M, Isiksoy S, Ak G (2008) The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J Int Med Res 36:88–95

    Article  PubMed  CAS  Google Scholar 

  114. Herbst RS, Onn A, Sandler A (2005) Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol 23:3243–3256

    Article  PubMed  CAS  Google Scholar 

  115. Hu J, Bianchi F, Ferguson M, Cesario A, Margaritora S, Granone P, Goldstraw P, Tetlow M, Ratcliffe C, Nicholson AG et al (2005) Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene 24:1212–1219

    Article  PubMed  CAS  Google Scholar 

  116. Offersen BV, Pfeiffer P, Hamilton-Dutoit S, Overgaard J (2001) Patterns of angiogenesis in nonsmall-cell lung carcinoma. Cancer 91:1500–1509

    Article  PubMed  CAS  Google Scholar 

  117. Ding BS, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z, Crystal RG, Simons M, Sato TN, Worgall S et al (2011) Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147:539–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF (2014) Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156:440–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  120. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  121. Li X, Lu Y, Liang K, Pan T, Mendelsohn J, Fan Z (2008) Requirement of hypoxia-inducible factor-1alpha down-regulation in mediating the antitumor activity of the anti-epidermal growth factor receptor monoclonal antibody cetuximab. Mol Cancer Ther 7:1207–1217

    Article  PubMed  CAS  Google Scholar 

  122. Minakata K, Takahashi F, Nara T, Hashimoto M, Tajima K, Murakami A, Nurwidya F, Yae S, Koizumi F, Moriyama H et al (2012) Hypoxia induces gefitinib resistance in non-small-cell lung cancer with both mutant and wild-type epidermal growth factor receptors. Cancer Sci 103:1946–1954

    Article  PubMed  CAS  Google Scholar 

  123. Murakami A, Takahashi F, Nurwidya F, Kobayashi I, Minakata K, Hashimoto M, Nara T, Kato M, Tajima K, Shimada N et al (2014) Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLoS One 9, e86459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Houghton AM (2013) Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13:233–245

    Article  PubMed  CAS  Google Scholar 

  125. Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT, Dubinett SM (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66:208–217

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yao H, Rahman I (2009) Current concepts on the role of inflammation in COPD and lung cancer. Curr Opin Pharmacol 9:375–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Keohavong P, Kahkonen B, Kinchington E, Yin J, Jin J, Liu X, Siegfried JM, DI YP (2011) K-ras mutations in lung tumors from NNK-treated mice with lipopolysaccharide-elicited lung inflammation. Anticancer Res 31:2877–2882

    PubMed  CAS  Google Scholar 

  128. Xu X, Padilla MT, Li B, Wells A, Kato K, Tellez C, Belinsky SA, Kim KC, Lin Y (2014) MUC1 in macrophage: contributions to cigarette smoke-induced lung cancer. Cancer Res 74:460–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Murin S, Inciardi J (2001) Cigarette smoking and the risk of pulmonary metastasis from breast cancer. Chest 119:1635–1640

    Article  PubMed  CAS  Google Scholar 

  130. Scanlon EF, Suh O, Murthy SM, Mettlin C, Reid SE, Cummings KM (1995) Influence of smoking on the development of lung metastases from breast cancer. Cancer 75:2693–2699

    Article  PubMed  CAS  Google Scholar 

  131. Abrams JA, Lee PC, Port JL, Altorki NK, Neugut AI (2008) Cigarette smoking and risk of lung metastasis from esophageal cancer. Cancer Epidemiol Biomarkers Prev 17:2707–2713

    Article  PubMed  PubMed Central  Google Scholar 

  132. Murin S, Pinkerton KE, Hubbard NE, Erickson K (2004) The effect of cigarette smoke exposure on pulmonary metastatic disease in a murine model of metastatic breast cancer. Chest 125:1467–1471

    Article  PubMed  Google Scholar 

  133. Das Roy L, Pathangey LB, Tinder TL, Schettini JL, Gruber HE, Mukherjee P (2009) Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res 11:R56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Roy LD, Curry JM, Sahraei M, Besmer DM, Kidiyoor A, Gruber HE, Mukherjee P (2013) Arthritis augments breast cancer metastasis: role of mast cells and SCF/c-Kit signaling. Breast Cancer Res 15:R32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Yan L, Cai Q, Xu Y (2013) The ubiquitin-CXCR4 axis plays an important role in acute lung infection-enhanced lung tumor metastasis. Clin Cancer Res 19:4706–4716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Jiang M, Xu X, Bi Y, Xu J, Qin C, Han M (2014) Systemic inflammation promotes lung metastasis via E-selectin upregulation in mouse breast cancer model. Cancer Biol Ther 15:789–796

    Article  PubMed  PubMed Central  Google Scholar 

  137. Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS, Fingleton B (2008) Host nuclear factor-kappaB activation potentiates lung cancer metastasis. Mol Cancer Res 6:364–371

    Article  PubMed  CAS  Google Scholar 

  138. Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D (2012) RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 122:1503–1518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Carlini MJ, De Lorenzo MS, Puricelli L (2011) Cross-talk between tumor cells and the microenvironment at the metastatic niche. Curr Pharm Biotechnol 12:1900–1908

    Article  PubMed  CAS  Google Scholar 

  142. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  144. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529

    Article  PubMed  Google Scholar 

  145. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355

    Article  PubMed  CAS  Google Scholar 

  147. Creelan BC (2014) Update on immune checkpoint inhibitors in lung cancer. Cancer Control 21:80–89

    PubMed  Google Scholar 

  148. Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J (2014) γδ T cells for cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology 3:e27572

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bonneville M, O’Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478

    Article  PubMed  CAS  Google Scholar 

  150. Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y, Cui L, He W (2009) Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol Ther 8:1540–1549

    Article  PubMed  CAS  Google Scholar 

  151. Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, Takamoto S, Kakimi K (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37:1191–1197

    Article  PubMed  Google Scholar 

  152. Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K (2010) Complete remission of lung metastasis following adoptive immunotherapy using activated autologous gammadelta T-cells in a patient with renal cell carcinoma. Anticancer Res 30:575–579

    PubMed  CAS  Google Scholar 

  153. Kusmartsev SA, Kusmartseva IN, Afanasyev SG, Cherdyntseva NV (1998) Immunosuppressive cells in bone marrow of patients with stomach cancer. Adv Exp Med Biol 451:189–194

    Article  PubMed  CAS  Google Scholar 

  154. Young MR, Lathers DM (1999) Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol 21:241–252

    Article  PubMed  CAS  Google Scholar 

  155. Young MR, Wright MA, Pandit R (1997) Myeloid differentiation treatment to diminish the presence of immune-suppressive CD34+ cells within human head and neck squamous cell carcinomas. J Immunol 159:990–996

    PubMed  CAS  Google Scholar 

  156. Srivastava MK, Andersson Å, Zhu L, Harris-White M, Lee JM, Dubinett S, Sharma S (2012) Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy 4:291–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Srivastava MK, Zhu L, Harris-White M, Kar UK, Kar U, Huang M, Johnson MF, Lee JM, Elashoff D, Strieter R et al (2012) Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 7, e40677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S et al (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16:1812–1823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Huang A, Zhang B, Wang B, Zhang F, Fan KX, Guo YJ (2013) Increased CD14(+)HLA-DR (-/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunol Immunother 62:1439–1451

    Article  PubMed  CAS  Google Scholar 

  160. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  161. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Chang J, Erler J (2014) Hypoxia-mediated metastasis. Adv Exp Med Biol 772:55–81

    Article  PubMed  CAS  Google Scholar 

  163. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  PubMed  CAS  Google Scholar 

  164. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89

    Article  CAS  Google Scholar 

  165. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Gao D, Joshi N, Choi H, Ryu S, Hahn M, Catena R, Sadik H, Argani P, Wagner P, Vahdat LT et al (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72:1384–1394

    Article  PubMed  CAS  Google Scholar 

  167. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    Article  PubMed  CAS  Google Scholar 

  168. Stefanovic S, Schuetz F, Sohn C, Beckhove P, Domschke C (2013) Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev 32:163–178

    Article  PubMed  CAS  Google Scholar 

  169. Catena R, Bhattacharya N, El Rayes T, Wang S, Choi H, Gao D, Ryu S, Joshi N, Bielenberg D, Lee SB et al (2013) Bone marrow-derived gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 3:578–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  PubMed  CAS  Google Scholar 

  171. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674

    Article  PubMed  CAS  Google Scholar 

  172. Paull T, Cortez D, Bowers B, Elledge S, Gellert M (2001) Direct DNA binding by Brca1. Proc Natl Acad Sci U S A 98:6086–6091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ye Q, Hu Y, Zhong H, Nye A, Belmont A, Li R (2001) BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol 155:911–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Xu X, Wagner K, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng C (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43

    Article  PubMed  CAS  Google Scholar 

  175. Thakur S, Croce C (1999) Positive regulation of the BRCA1 promoter. J Biol Chem 274:8837–8843

    Article  PubMed  CAS  Google Scholar 

  176. Xu C, Brown M, Chambers J, Griffiths B, Nicolai H, Solomon E (1995) Distinct transcription start sites generate two forms of BRCA1 mRNA. Hum Mol Genet 4:2259–2264

    Article  PubMed  CAS  Google Scholar 

  177. Xu C-F, Chambers J, Solomon E (1997) Complex regulation of the BRCA1 gene. J Biol Chem 272:20994–20997

    Article  PubMed  CAS  Google Scholar 

  178. Dimitrov S, Matouskova E, Forejt J (2001) Expression of BRCA1, NBR1 and NBR2 genes in human breast cancer cells. Folia Biol 47:120–127

    CAS  Google Scholar 

  179. Gudas J, Li T, Nguyen H, Jensen D, Rauscher F, Cowan K (1996) Cell cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell Growth Differ 7:717–723

    PubMed  CAS  Google Scholar 

  180. Spillman M, Bowcock A (1996) BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene 13:1639–1645

    PubMed  CAS  Google Scholar 

  181. Suen T, Goss P (1999) Transcription of BRCA1 is dependent on the formation of a specific protein-DNA complex on the minimal BRCA1 Bi-directional promoter. J Biol Chem 274:31297–31304

    Article  PubMed  CAS  Google Scholar 

  182. Romagnolo D, Annab L, Thompson T, Risinger J, Terry L, Barrett J, Afshari C (1998) Estrogen upregulation of BRCA1 expression with no effect on localization. Mol Carcinog 22:102–109

    Article  PubMed  CAS  Google Scholar 

  183. Atlas E, Stramwasser M, Whiskin K, Mueller C (2000) GA-binding protein alpha/beta is a critical regulator of the BRCA1 promoter. Oncogene 19:1933–1940

    Article  PubMed  CAS  Google Scholar 

  184. Marquis S, Rajan J, Wynshaw-Boris A, Xu J, Yin G, Abel K, Weber B, Chodosh L (1995) The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 11:17–26

    Article  PubMed  CAS  Google Scholar 

  185. Welcsh P, Lee M, Gonzalez-Hernandez R, Black D, Mahadevappa M, Swisher E, Warrington J, King M (2002) BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci U S A 99:7560–7565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Hennighausen L, Robinson G (1998) Think globally, act locally: the making of a mouse mammary gland. Genes Dev 12:449–455

    Article  PubMed  CAS  Google Scholar 

  187. Blackshear P, Goldsworthy S, Foley J, McAllister K, Bennett L, Collins N, Bunch D, Brown P, Wiseman R, Davis B (1998) Brca1 and Brca2 expression patterns in mitotic and meiotic cells of mice. Oncogene 16:61–68

    Article  PubMed  CAS  Google Scholar 

  188. Rajan J, Marquis S, Gardner H, Chodosh L (1997) Developmental expression of Brca2 colocalizes with Brca1 and is associated with proliferation and differentiation in multiple tissues. Dev Biol 184:385–401

    Article  PubMed  CAS  Google Scholar 

  189. Du S, Barcellos-Hoff MH (2013) Biologically augmenting radiation therapy by inhibiting TGFβ actions in carcinomas. Semin Radiat Oncol 23:242–251

    Article  PubMed  PubMed Central  Google Scholar 

  190. Vignard J, Mirey G, Salles B (2013) Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol 108:362–369

    Article  PubMed  CAS  Google Scholar 

  191. Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA, Gattone VH, LeBleu VS, Kalluri R (2013) TGF-β1–containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer 5:867–875

    Article  PubMed  CAS  Google Scholar 

  194. Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Cancer Rev 11:239–253

    Article  CAS  Google Scholar 

  195. Erickson AC, Barcellos-Hoff MH (2003) The not-so innocent bystander: microenvironment as a target of cancer therapy. Expert Opin Ther Targets 7:71–88

    Article  PubMed  CAS  Google Scholar 

  196. Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K (2001) Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91:964–971

    Article  PubMed  CAS  Google Scholar 

  197. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, Shepherd FA (2011) Non-small-cell lung cancer. Lancet 378:1727–1740

    Article  PubMed  Google Scholar 

  198. Jarvis E, Kirk J, Clarke C (1998) Loss of nuclear BRCA1 expression in breast cancers is associated with a highly proliferative tumor phenotype. Cancer Genet Cytogenet 101:109–115

    Article  PubMed  CAS  Google Scholar 

  199. Akhurst RJ, Hata A (2012) Targeting the TGF[beta] signalling pathway in disease. Nat Rev Drug Discov 11:790–811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Mengxian Z, Kleber S, Roehrich M, Timke C, Han N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U et al (2011) Blockade of TGF-beta signaling by the TGF{beta}R-I kinase Inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:155–67

    Article  Google Scholar 

  201. Zhang M, Herion TW, Timke C, Han N, Hauser K, Weber KJ, Peschke P, Wirkner U, Lahn M, Huber PE (2011) Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 13:537–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Peñuelas S, Anido J, Prieto-Sánchez RM, Folch G, Barba I, Cuartas I, García-Dorado D, Poca MA, Sahuquillo J, Baselga J et al (2009) TGF-[beta] increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327

    Article  PubMed  CAS  Google Scholar 

  203. Barcellos-Hoff MH, Akhurst RJ (2010) Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res Treat 11:202–208

    Article  CAS  Google Scholar 

  204. Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick A, Lavin M, Koslov S, Shiloh Y, Barcellos-Hoff MH (2006) Inhibition of TGFb1 signaling attenuates ATM activity in response to genotoxic stress. Cancer Res 66:10861–10868

    Article  PubMed  CAS  Google Scholar 

  205. Bouquet SF, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, DeWyngaert JK, Formenti S et al (2011) Transforming growth factor β1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Taylor J, Lymboura M, Pace P, A’hern R, Desai A, Shousha S, Coombes R, Ali S (1998) An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int J Cancer 79:334–342

    Article  PubMed  CAS  Google Scholar 

  207. Jones LP, Li M, Halama ED, Ma Y, Lubet R, Grubbs CJ, Deng CX, Rosen EM, Furth PA (2005) Promotion of mammary cancer development by tamoxifen in a mouse model of Brca1-mutation-related breast cancer. Oncogene 24:3554–3562

    Article  PubMed  CAS  Google Scholar 

  208. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13:511–518

    Article  PubMed  CAS  Google Scholar 

  209. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726

    Article  PubMed  PubMed Central  Google Scholar 

  210. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  211. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  PubMed  CAS  Google Scholar 

  212. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787

    Article  PubMed  CAS  Google Scholar 

  213. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8–29

    Article  PubMed  Google Scholar 

  214. Blumenschein GR (2012) Developmental antiangiogenic agents for the treatment of non-small cell lung cancer (NSCLC). Invest New Drugs 30:1802–1811

    Article  PubMed  CAS  Google Scholar 

  215. Korpanty G, Smyth E, Carney DN (2011) Update on anti-angiogenic therapy in non-small cell lung cancer: are we making progress? J Thorac Dis 3:19–29

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Herbst RS (2008) Bevacizumab/chemotherapy in non-small-cell lung cancer: looking for a few good men? Clin Lung Cancer 9:75–76

    Article  PubMed  Google Scholar 

  217. Planchard D (2011) Bevacizumab in non-small-cell lung cancer: a review. Expert Rev Anticancer Ther 11:1163–1179

    Article  PubMed  CAS  Google Scholar 

  218. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  219. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234

    Article  PubMed  CAS  Google Scholar 

  220. Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O’Toole K, Zabski S, Rudge JS et al (2003) Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A 100:7785–7790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Neal JW, Wakelee HA (2013) Aflibercept in lung cancer. Expert Opin Biol Ther 13:115–120

    Article  PubMed  CAS  Google Scholar 

  222. Blumenschein GR, Kabbinavar F, Menon H, Mok TS, Stephenson J, Beck JT, Lakshmaiah K, Reckamp K, Hei YJ, Kracht K et al (2011) A phase II, multicenter, open-label randomized study of motesanib or bevacizumab in combination with paclitaxel and carboplatin for advanced nonsquamous non-small-cell lung cancer. Ann Oncol 22:2057–2067

    Article  PubMed  Google Scholar 

  223. Das M, Wakelee H (2012) Anti-angiogenic agents in Non-Small-Cell Lung Cancer (NSCLC): a perspective on the MONET1 (Motesanib NSCLC Efficacy and Tolerability) study. J Thorac Dis 4:558–561

    PubMed  PubMed Central  Google Scholar 

  224. Scagliotti GV, Vynnychenko I, Park K, Ichinose Y, Kubota K, Blackhall F, Pirker R, Galiulin R, Ciuleanu TE, Sydorenko O et al (2012) International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J Clin Oncol 30:2829–2836

    Article  PubMed  CAS  Google Scholar 

  225. Paz-Ares LG, Biesma B, Heigener D, von Pawel J, Eisen T, Bennouna J, Zhang L, Liao M, Sun Y, Gans S et al (2012) Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lung cancer. J Clin Oncol 30:3084–3092

    Article  PubMed  CAS  Google Scholar 

  226. Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, von Pawel J, Gottfried M, Bondarenko I, Liao M et al (2014) Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol 15:143–155

    Article  PubMed  CAS  Google Scholar 

  227. Lara PN, Douillard JY, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo DS, Fan X et al (2011) Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol 29:2965–2971

    Article  PubMed  CAS  Google Scholar 

  228. McKeage MJ, Reck M, Jameson MB, Rosenthal MA, Gibbs D, Mainwaring PN, Freitag L, Sullivan R, Von Pawel J (2009) Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 65:192–197

    Article  PubMed  Google Scholar 

  229. McKeage MJ, Von Pawel J, Reck M, Jameson MB, Rosenthal MA, Sullivan R, Gibbs D, Mainwaring PN, Serke M, Lafitte JJ et al (2008) Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer 99:2006–2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Aggarwal C, Somaiah N, Simon G (2012) Antiangiogenic agents in the management of non-small cell lung cancer: where do we stand now and where are we headed? Cancer Biol Ther 13:247–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Wall RJ, Shyr Y, Smalley W (2007) Nonsteroidal anti-inflammatory drugs and lung cancer risk: a population-based case control study. J Thorac Oncol 2:109–114

    PubMed  Google Scholar 

  233. McCormack VA, Hung RJ, Brenner DR, Bickeböller H, Rosenberger A, Muscat JE, Lazarus P, Tjønneland A, Friis S, Christiani DC et al (2011) Aspirin and NSAID use and lung cancer risk: a pooled analysis in the International Lung Cancer Consortium (ILCCO). Cancer Causes Control 22:1709–1720

    Article  PubMed  Google Scholar 

  234. Edelman MJ, Hodgson L, Wang X, Kratzke RA, Vokes EE (2012) Cyclooxygenase-2 (COX-2) as a predictive marker for the use of COX-2 inhibitors in advanced non-small-cell lung cancer. J Clin Oncol 30:2019–2020; author reply 2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Drazen JM (2005) COX-2 inhibitors–a lesson in unexpected problems. N Engl J Med 352:1131–1132

    Article  PubMed  CAS  Google Scholar 

  236. Daniluk J, Liu Y, Deng D, Chu J, Huang H, Gaiser S, Cruz-Monserrate Z, Wang H, Ji B, Logsdon CD (2012) An NF-κB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest 122:1519–1528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, Shaw RJ, Verma IM (2012) Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol 14:257–265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Langer CJ (2015) Emerging immunotherapies in the treatment of non-small cell lung cancer (NSCLC): the role of immune checkpoint inhibitors. Am J Clin Oncol 38:422–30

    Article  PubMed  CAS  Google Scholar 

  239. Callahan MK, Wolchok JD, Allison JP (2010) Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 37:473–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, Maio M, Binder M, Bohnsack O, Nichol G et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  PubMed  CAS  Google Scholar 

  241. Drilon A, Rekhtman N, Ladanyi M, Paik P (2012) Squamous-cell carcinomas of the lung: emerging biology, controversies, and the promise of targeted therapy. Lancet Oncol 13:e418–426

    Article  PubMed  CAS  Google Scholar 

  242. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094–5100

    Article  PubMed  CAS  Google Scholar 

  243. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28:682–688

    Article  PubMed  CAS  Google Scholar 

  244. Brahmer JR (2014) Immune checkpoint blockade: the hope for immunotherapy as a treatment of lung cancer? Semin Oncol 41:126–132

    Article  PubMed  CAS  Google Scholar 

  245. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19:1021–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Zhang Y, Huang S, Gong D, Qin Y, Shen Q (2010) Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol 7:389–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Forde PM, Kelly RJ, Brahmer JR (2014) New strategies in lung cancer: translating immunotherapy into clinical practice. Clin Cancer Res 20:1067–1073

    Article  PubMed  CAS  Google Scholar 

  248. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM et al (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 30:2046–2054

    Article  PubMed  CAS  Google Scholar 

  249. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P (2014) Pituitary expression of ctla-4 mediates hypophysitis secondary to administration of ctla-4 blocking antibody. Sci Transl Med 6:230ra245

    Article  CAS  Google Scholar 

  250. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Al Omar S, Middleton D, Marshall E, Porter D, Xinarianos G, Raji O, Field JK, Christmas SE (2010) Associations between genes for killer immunoglobulin-like receptors and their ligands in patients with solid tumors. Hum Immunol 71:976–981

    Article  PubMed  CAS  Google Scholar 

  252. Diaz-Montero CM, Finke J, Montero AJ (2014) Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol 41:174–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62:909–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Carney DN (2002) Lung cancer–time to move on from chemotherapy. N Engl J Med 346:126–128

    Article  PubMed  Google Scholar 

  255. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3:1355–1363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Sharell Lee for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivek Mittal or Mary Helen Barcellos-Hoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mittal, V., El Rayes, T., Narula, N., McGraw, T.E., Altorki, N.K., Barcellos-Hoff, M.H. (2016). The Microenvironment of Lung Cancer and Therapeutic Implications. In: Ahmad, A., Gadgeel, S. (eds) Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Advances in Experimental Medicine and Biology, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-319-24932-2_5

Download citation

Publish with us

Policies and ethics